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ABSTRACT
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a
single unit in panel data settings. The “synthetic control”is a weighted average of control units that balances
the treated unit’s pretreatment outcomes and other covariates as closely as possible. A critical feature of
the original proposal is to use SCM only when the fit on pretreatment outcomes is excellent. We propose
Augmented SCM as an extension of SCM to settings where such pretreatment fit is infeasible. Analogous
to bias correction for inexact matching, augmented SCM uses an outcome model to estimate the bias due
to imperfect pretreatment fit and then de-biases the original SCM estimate. Our main proposal, which uses
ridge regression as the outcome model, directly controls pretreatment fit while minimizing extrapolation
from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls
problem that allows negative weights on some donor units. We bound the estimation error of this approach
under different data-generating processes, including a linear factor model, and show how regularization
helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation
studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth.
We implement the proposed method in the new augsynth R package.
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1. Introduction

The synthetic control method (SCM) is a popular approach
for estimating the impact of a treatment on a single unit in
panel data settings with a modest number of control units
and with many pretreatment periods (Abadie and Gardeazabal
2003; Abadie, Diamond, and Hainmueller 2010, 2015). The
idea is to construct a weighted average of control units,
known as a synthetic control, that matches the treated unit’s
pretreatment outcomes. The estimated impact is then the
difference in posttreatment outcomes between the treated unit
and the synthetic control. SCM has been widely applied—the
main SCM papers have over 4000 citations — and has been
called “arguably the most important innovation in the policy
evaluation literature in the last 15 years” (Athey and Imbens
2017).

A critical feature of the original proposal, not always followed
in practice, is to use SCM only when the synthetic control’s pre-
treatment outcomes closely match the pretreatment outcomes
for the treated unit (Abadie, Diamond, and Hainmueller 2015).
When it is not possible to construct a synthetic control that fits
pretreatment outcomes well, the original articles advise against
using SCM. At that point, researchers often fall back to linear
regression. This allows better (often perfect) pretreatment fit,
but does so by applying negative weights to some control units,
extrapolating outside the support of the data.

We propose the augmented synthetic control method (ASCM)
as a middle ground in settings where excellent pretreatment fit

CONTACT Avi Feller afeller@berkeley.edu Department of Statistics, Goldman School of Public Policy, University of California, Berkeley, 309 GSPP Main, 2607
Hearst Avenue, Berkeley, CA 94720.
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using SCM alone is not feasible. Analogous to bias correction for
inexact matching (Abadie and Imbens 2011), ASCM begins with
the original SCM estimate, uses an outcome model to estimate
the bias due to imperfect pretreatment fit, and then uses this to
de-bias the SCM estimate. If pretreatment fit is good, then the
estimated bias will be small, and the SCM and ASCM estimates
will be similar. Otherwise, the estimates will diverge, and ASCM
will rely more heavily on extrapolation.

Our primary proposal is to augment SCM with a ridge regres-
sion model, which we call Ridge ASCM. We show that, like SCM,
the Ridge ASCM estimator can be written as a weighted average
of the control unit outcomes. We also show that Ridge ASCM
weights can be written as the solution to a modified synthetic
controls problem, targeting the same imbalance metric as tradi-
tional SCM. However, where SCM weights are always nonnega-
tive, Ridge ASCM admits negative weights, using extrapolation
to improve pretreatment fit. The regularization parameter in
Ridge ASCM directly parameterizes the level of extrapolation by
penalizing the distance from SCM weights. By contrast, (ridge)
regression alone, which can also be written as a modified syn-
thetic controls problem with possibly negative weights, allows
for arbitrary extrapolation and possibly unchecked extrapola-
tion bias.

We relate Ridge ASCMs, improved pretreatment fit to a
finite sample bound on estimation error under several data-
generating processes (DGPs), including an autoregressive
model and the linear factor model often invoked in this setting

© 2021 American Statistical Association
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(Abadie, Diamond, and Hainmueller 2010). Under an autore-
gressive model, improving pretreatment fit directly reduces bias,
and the Ridge ASCM penalty term negotiates a bias-variance
trade-off. Under a latent factor model, improving pretreatment
fit again reduces bias, though there is now a risk of over-fitting,
and the penalty term again directly parameterizes this trade-
off. Thus, choosing the hyperparameter will be important for
practice; we propose a cross-validation procedure in Section 5.3.

Finally, we describe how the Augmented SCM approach
can be extended to incorporate auxiliary covariates other than
pretreatment outcomes. We first propose to include the aux-
iliary covariates in parallel to the lagged outcomes in both
the SCM and outcome models. We also propose an alternative
when there are relatively few covariates, extending a suggestion
from Doudchenko and Imbens (2017): first residualize pre- and
posttreatment outcomes against the auxiliary covariates, then fit
Ridge ASCM on the residualized outcome series. We show that
this controls the estimation error under a linear factor model
with auxiliary covariates.

An important question in practice is when to prefer
Augmented SCM to SCM alone. We recommend making this
decision based on the estimated bias, the computation of which
is the first step of implementing the ASCM estimator. If the
estimated bias—the difference between the outcome model’s
fitted values for the treated unit and the synthetic control—is
large, then it is worth trading off bias reduction from ASCM
for some extrapolation, which the researcher can also assess
directly. Since the estimated bias is in the same units as the
estimand of interest, researchers can assess what constitutes
“large” bias based on context.

We demonstrate the properties of Augmented SCM via both
calibrated simulation studies and by using it to examine the
effect of an aggressive tax cut in Kansas in 2012 on economic
output, finding a substantial negative effect. Overall, we see
large gains from ASCM relative to alternative estimators, espe-
cially under model mis-specification, in terms of both bias and
root mean squared error (RMSE). We implement the proposed
methodology in the augsynth package for R, available at
https://github.com/ebenmichael/augsynth.

The article proceeds as follows. Section 1.1 briefly reviews
related work. Section 2 introduces notation, the underlying
models and assumptions, and the SCM estimator. Section 3 gives
an overview of Augmented SCM. Section 4 gives key algorithmic
results for Ridge ASCM. Section 5 bounds the Ridge ASCM
estimation error under a linear model and under a linear factor
model, the standard setting for SCM, and also addresses infer-
ence. Section 6 extends the ASCM framework to incorporate
auxiliary covariates. Section 7 reports on extensive simulation
studies as well as the application to the Kansas tax cuts.
Finally, Section 8 discusses some possible directions for further
research. The supplementary material includes all of the proofs,
as well as additional derivations and technical discussion.

1.1. Related Work

SCM was introduced by Abadie and Gardeazabal (2003) and
Abadie, Diamond, and Hainmueller (2010, 2015) and is the
subject of an extensive methodological literature; see Abadie

(2021) and Samartsidis et al. (2019) for recent reviews. We
briefly highlight some relevant aspects of this literature.

A group of articles adapts the original SCM proposal to allow
for more robust estimation while retaining SCM’s simplex con-
straint on the weights. Robbins, Saunders, and Kilmer (2017),
Doudchenko and Imbens (2017), and Abadie and L’Hour (2018)
incorporated a penalty on the weights into the SCM optimiza-
tion problem, building on a suggestion in Abadie, Diamond,
and Hainmueller (2015). Gobillon and Magnac (2016) explored
dimension reduction strategies and other data transformations
that can improve the performance of the subsequent estimator.

A second set of articles relaxes constraints imposed in
the original SCM problem, in particular the restriction that
control unit weights be nonnegative. Doudchenko and Imbens
(2017) argued that there are many settings in which negative
weights would be desirable. Amjad, Shah, and Shen (2018)
proposed an interesting variant that combines negative weights
with a preprocessing step. Powell (2018) instead allowed for
extrapolation via a Frisch-Waugh-Lovell-style projection, which
similarly generalizes the typical SCM setting. Doudchenko and
Imbens (2017) and Ferman and Pinto (2018) both proposed
to incorporate an intercept into the SCM problem, which we
discuss in Section 3.2.

There have also been several other proposals to reduce bias
in SCM, developed independently and contemporaneously with
ours. Abadie and L’Hour (2018) also proposed bias correcting
SCM using regression. Kellogg et al. (2020) proposed using a
weighted average of SCM and matching, trade-off interpolation
and extrapolation bias. Arkhangelsky et al. (2019) proposed the
synthetic difference-in-differences estimator, which is similar to a
version of our proposal with a constrained outcome regression.

Finally, there have also been recent proposals to use
outcome modeling rather than SCM-style weighting in this
setting. These include the matrix completion method in Athey
et al. (2017), the generalized synthetic control method in
Xu (2017), and the combined approaches in Hsiao et al.
(2018). We explore the performance of select methods,
both in isolation and within our ASCM framework, in
Section 7.1.

2. Overview of the SCM

2.1. Notation and Setup

We consider the canonical SCM panel data setting with i =
1, . . . , N units observed for t = 1, . . . , T time periods; for the
theoretical discussion below, we will consider both N and T to be
fixed. Let Wi be an indicator that unit i is treated at time T0 < T
where units with Wi = 0 never receive the treatment. We restrict
our attention to the case where a single unit receives treatment,
and follow the convention that this is the first one, W1 = 1;
see Ben-Michael, Feller, and Rothstein (2019) for an extension
to multiple treated units. The remaining N0 = N − 1 units are
possible controls, often referred to as donor units in the SCM
context. To simplify notation, we limit to one posttreatment
observation, T = T0 + 1, though our results are easily extended
to larger T.

We adopt the potential outcomes framework (Neyman 1923)
and invoke SUTVA, which assumes a well-defined treatment

https://github.com/ebenmichael/augsynth
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and excludes interference between units; the potential outcomes
for unit i in period t under control and treatment are Yit(0) and
Yit(1), respectively. We define the treated potential outcome as
Yit(1) = Yit(0) + τit , where the treatment effects τit are fixed
parameters. Since the first unit is treated, the key estimand of
interest is τ = τ1T = Y1T(1) − Y1T(0). Finally, the observed
outcomes are

Yit =
{

Yit(0) if Wi = 0 or t ≤ T0,
Yit(1) if Wi = 1 and t > T0. (1)

To emphasize that pretreatment outcomes serve as covariates
in SCM, we use Xit , for t ≤ T0, to represent pretreatment
outcomes; we use the terms pretreatment fit and covariate bal-
ance interchangeably. With some abuse of notation, we use X0·
to represent the N0-by-T0 matrix of control unit pretreatment
outcomes and Y0T for the N0-vector of control unit outcomes
in period T. With only one treated unit, Y1T is a scalar, and X1·
is a T0-row vector of treated unit pretreatment outcomes. The
data structure is then⎛⎜⎜⎜⎝

Y11 Y12 . . . Y1T0 Y1T
Y21 Y22 . . . Y2T0 Y2T

...
...

YN1 YN2 . . . YNT0 YNT

⎞⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎝
X11 X12 . . . X1T0 Y1T
X21 X22 . . . X2T0 Y2T

...
...

XN1 XN2 . . . XNT0︸ ︷︷ ︸
pretreatment outcomes

YNT

⎞⎟⎟⎟⎟⎟⎠
≡
(

X1· Y1T
X0· Y0T

)
. (2)

2.2. Assumptions on the DGP

We now give assumptions on the underlying DGPs for the
control potential outcomes. We separate control potential out-
comes (before and after T0) into a model component mit plus an
additive noise term εit ∼ P(·):

Yit(0) = mit + εit , (3)
where epsilon is sub-Gaussian with scale parameter σ . This
setup encompasses many common panel data models; see Cher-
nozhukov, Wüthrich, and Zhu (2019) for an extended discus-
sion. Here, we consider two specific versions of Equation (3): (a)
for posttreatment time T, YiT(0) is linear in its lagged values;
and (b) for all t = 1, . . . , T, Yit(0) is linear in a set of latent
factors. In the supplementary material, we also consider the case
where mit is a linear model with Lipshitz deviations.

Assumption 1 (Model component). The control potential out-
comes are generated according to the following model and error
components:

(a) For time period T, the model components miT are generated
as
∑T0

�=1 β�Yi(t−�)(0), so the control potential outcomes
Yit(0) are

Yit(0) =
T0∑

�=1
β�Yi(t−�)(0) + εit , (4)

where {εiT} have zero mean for each unit:

E [εiT] = 0 ∀i = 1, . . . , N. (5)

(b) There are J unknown, latent time-varying factors at time t =
1, . . . , T, μt = {μjt} ∈ R

J , with maxjt |μjt| ≤ M, and each
unit has a vector of unknown factor loadings φi ∈ R

J . We
collect the pre-intervention factors into a matrix μ ∈ R

T0×J ,
where the tth row of μ contains the factor values at time t,
μ′

t and assume that 1
T0

μ′μ = IJ . The model components
mit are generated as mit = φi · μt , so the control potential
outcomes Yit(0) are generated as follows:

Yit(0) = φi · μt + εit =
J∑

j=1
φijμjt + εit , (6)

where the noise terms for all units and all periods have zero
mean:

E [εit] = 0 ∀i = 1, . . . , N and ∀t = 1, . . . , T. (7)

We consider both the time-varying factors μt and the unit-
varying factor loadings φi to be nonrandom quantities, so
the randomness in Yit(0) is only due to the noise term εit .

Assumptions 1(a) and (b) enable estimation of the missing
counterfactual outcome. In Assumption 1(a), the mean-zero
noise restrictions hold for the treated unit (i = 1), and rule
out any unmeasured variables that are correlated with the out-
comes and that have different distributions for the treated unit
and comparison units. Treatment assignment can depend on
the past outcomes, but cannot depend on posttreatment out-
comes; furthermore, there cannot be serial correlation between
the posttreatment and pretreatment noise. This DGP includes
the special case of an autoregressive process of order K <

T0. Assumption 1(b) allows for the existence of unmeasured
confounders, the factor loadings, that enter into the DGP in
a structured way. Treatment assignment can depend on the
factor loadings, but cannot depend on the realized pretreatment
outcomes. We discuss this in more detail in the context of our
application in Section 7.

2.3. Synthetic Control Method

The SCM imputes the missing potential outcome for the treated
unit, Y1T(0), as a weighted average of the control outcomes,
Y ′

0Tγ (Abadie and Gardeazabal 2003; Abadie, Diamond, and
Hainmueller 2010, 2015). Weights are chosen to balance pre-
treatment outcomes and possibly other covariates. We consider
a version of SCM that chooses weights γ as a solution to the
constrained optimization problem:

min
γ

||Vx1/2(X1· − X′
0·γ )||22 + ζ

∑
Wi=0

f (γi)

subject to
∑

Wi=0
γi = 1

γi ≥ 0 i : Wi = 0

(8)

where the constraints limit γ to the simplex 
N0 = {γ ∈
R

N0 |γi ≥ 0 ∀i,
∑

i γi = 1}, where Vx ∈ R
T0×T0 is a

symmetric importance matrix and ||Vx1/2(X1· − X′
0·γ )||22 ≡

https://doi.org/10.1080/01621459.2021.1929245
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(X1·−X′
0·γ )′Vx(X1·−X′

0·γ ) is the 2-norm onR
T0 after applying

Vx1/2 as a linear transformation, and where f (γi) is a dispersion
penalty on the weights that we discuss below. To simplify the
exposition and notation below, we will generally take Vx to
be the identity matrix. The simplex constraint in Equation (8)
ensures that the weights will be sparse and nonnegative; Abadie,
Diamond, and Hainmueller (2010, 2015) argued that enforcing
this constraint is important for preserving interpretability.

Equation (8) modifies the original SCM proposal in two
ways. First, Equation (8) penalizes the dispersion of the weights
with hyperparameter ζ ≥ 0, following a suggestion in Abadie,
Diamond, and Hainmueller (2015). The choice of penalty is less
central when weights is constrained to be on the simplex, but
becomes more important below when we relax this constraint
(Doudchenko and Imbens 2017). Second, Equation (8) excludes
auxiliary covariates; we re-introduce them in Section 6.

When the treated unit’s vector of lagged outcomes, X1·, is
inside the convex hull of the control units’ lagged outcomes, X0·,
the SCM weights in Equation (8) achieve perfect pretreatment
fit, and the resulting estimator has many attractive properties. In
this setting, Abadie, Diamond, and Hainmueller (2010) showed
that SCM will be unbiased under the autoregressive model in
Assumption 1(a) and bound the bias under the linear factor
model in Assumption 1(b).

Due to the curse of dimensionality, however, achieving per-
fect (or nearly perfect) pretreatment fit is not always feasible
with weights constrained to be on the simplex (see Ferman
and Pinto 2018). When “the pretreatment fit is poor or the
number of pretreatment periods is small,” Abadie, Diamond,
and Hainmueller (2015) recommended against using SCM. And
even if the pretreatment fit is excellent, Abadie, Diamond, and
Hainmueller (2010, 2015) proposed extensive placebo checks
to ensure that SCM weights do not overfit to noise. Thus, the
conditional nature of the analysis is critical to deploying SCM,
excluding many practical settings. Our proposal enables the use
of (a modified) SCM approach in many of the cases where SCM
alone is infeasible.

3. Augmented SCM

3.1. Overview

We now show how to modify the SCM approach to adjust for
poor pretreatment fit. Let m̂iT be an estimator for miT , the model
component of the posttreatment control potential outcome. The
Augmented SCM (ASCM) estimator for Y1T(0) is

Ŷaug
1T (0) =

∑
Wi=0

γ̂ scm
i YiT +

⎛⎝m̂1T −
∑

Wi=0
γ̂ scm

i m̂iT

⎞⎠ (9)

= m̂1T +
∑

Wi=0
γ̂ scm

i (YiT − m̂iT), (10)

where weights γ̂ scm
i are the SCM weights defined above. Stan-

dard SCM is a special case, where m̂iT is a constant. We will
largely focus on estimators that are functions of pretreatment
outcomes, m̂iT ≡ m̂(Xi), where m̂ : RT0 → R.

Equations (9) and (10), while equivalent, highlight two dis-
tinct motivations for ASCM. Equation (9) directly corrects the

SCM estimate,
∑

γ̂ scm
i YiT , by the imbalance in a particular

function of the pretreatment outcomes m̂(·). Intuitively, since
m̂ estimates the posttreatment outcome, we can view this as
an estimate of the bias due to imbalance, analogous to bias
correction for inexact matching (Abadie and Imbens 2011). In
this form, we can see that SCM and ASCM estimates will be
similar if the estimated bias is small, as measured by imbalance
in m̂(·). If the estimated bias is large, the two estimators will
diverge, and the conditions for appropriate use of SCM will
not apply. In independent work, Abadie and L’Hour (2018) also
considered a bias-corrected estimator of this form.

Equation (10), by contrast, is analogous to standard doubly
robust estimation (Robins, Rotnitzky, and Zhao 1994), which
begins with the outcome model but then re-weights to balance
residuals. We discuss connections to inverse propensity score
weighting and survey calibration in Appendix E in the supple-
mentary material.

3.2. Choice of Estimator

While this setup is general, the choice of estimator m̂ is impor-
tant both for understanding the procedure’s properties and for
practical performance. We give a brief overview of two special
cases: (i) when m̂ is linear in pretreatment outcomes; and (ii)
when m̂ is linear in the comparison units’ posttreatment out-
comes. Ridge regression is an important example that is linear
in both; we explore this estimator further in Sections 4 and 5.

First, consider an estimator that is linear in pretreatment
outcomes, m̂(X) = η̂0 + η̂ · X. The augmented estimator (9)
is then

Ŷaug
1T (0) =

∑
Wi=0

γ̂ scm
i YiT

+
T0∑

t=1
η̂t

⎛⎝X1t −
∑

Wi=0
γ̂ scm

i Xit

⎞⎠ . (11)

Pretreatment periods that are more predictive of the posttreat-
ment outcome will have larger (absolute) regression coefficients
and so imbalance in these periods will lead to a larger adjust-
ment. Thus, even if we do not a priori prioritize balance in any
particular pretreatment time periods (via the choice of Vx), the
linear model augmentation will adjust for the time periods that
are empirically more predictive of the posttreatment outcome.
As we show in Section 4, the ridge-regularized linear model
is an important special case in which the resulting augmented
estimator is itself a penalized synthetic control estimator. This
allows for a more direct analysis of the role of bias correction.

Second, consider an estimator that is a linear combination
of comparison units’ posttreatment outcomes, m̂(X) =∑

Wi=0 α̂i(X)YiT , for some weighting function α̂ : RT0 → R
N0 .

Examples include k-nearest neighbor matching and kernel
weighting as well as other “vertical” regression approaches
(Athey et al. 2017). The augmented estimator (9) is itself a
weighting estimator that adjusts the SCM weights

Ŷaug
1T (0) =

∑
Wi=0

(
γ̂ scm

i + γ̂
adj
i

)
YiT , where

γ̂
adj
i ≡ α̂i(X1) −

∑
Wj=0

γ̂ scm
j α̂i(Xj). (12)

https://doi.org/10.1080/01621459.2021.1929245
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Here, the adjustment term for unit i, γ̂
adj
i , is the imbalance

in a unit i-specific transformation of the lagged outcomes that
depends on the weighting function α(·). While γ̂ scm are con-
strained to be on the simplex, the form of γ̂ adj makes clear that
the overall weights can be negative.

There are many special cases to consider. One is the linear-in-
lagged-outcomes model with equal coefficients, η̂t = 1

T0
, which

estimates a fixed-effects outcome model as m̂(Xi) = X̄i. The
corresponding treatment effect estimate adjusts for imbalance
in all pretreatment time periods equally, and yields a weighted
difference-in-differences estimator

τ̂de = (Y1T − X̄1
)−
⎛⎝∑

Wi=0
γ̂i(YiT − X̄i)

⎞⎠
= 1

T0

T0∑
t=1

⎡⎣(Y1T − X1t) −
⎛⎝∑

Wi=0
γ̂i(YiT − Xit)

⎞⎠⎤⎦ . (13)

An augmented estimator of this form has appeared as the de-
meaned or intercept shift SCM (Doudchenko and Imbens 2017;
Ferman and Pinto 2018). As we discuss in Section 6, these
proposals balance the residual outcomes Xit − X̄i rather than
the raw outcomes Xit . See also Arkhangelsky et al. (2019), who
extended this to weight across both units and time.

In Section 7.1 we conduct a simulation study to inspect the
performance of a range of estimators including other penalized
linear models, such as the LASSO; flexible machine learning
models, such as random forests; and panel data methods, such as
fixed-effects models and low-rank matrix completion methods
(Xu 2017; Athey et al. 2017).

4. Ridge ASCM

We now inspect the algorithmic properties for the special case
where m̂(Xi) is estimated via a ridge-regularized linear model,
which we refer to as Ridge Augmented SCM (Ridge ASCM).
With Ridge ASCM, the estimator for the posttreatment outcome
is m̂(Xi) = η̂

ridge
0 + X′

iη̂
ridge, where η̂

ridge
0 and η̂

ridge are the
coefficients of a ridge regression of control posttreatment out-
comes Y0T on centered pretreatment outcomes X0· with penalty
hyperparameter λridge{

η̂
ridge
0 , η̂ridge

}
= arg min

η0,η

1
2
∑

Wi=0
(Yi − (η0 + X′

iη))2

+λridge||η||22. (14)

The Ridge Augmented SCM estimator is then

Ŷaug
1T (0) =

∑
Wi=0

γ̂ scm
i YiT +

⎛⎝X1 −
∑

Wi=0
γ̂ scm

i Xi·

⎞⎠·η̂ridge. (15)

We first show that Ridge ASCM is a linear weighting estima-
tor as in Equation (12). Unlike augmenting with other linear
weighting estimators, when augmenting with ridge regression
the implied weights are themselves the solution to a penalized
synthetic control problem, as in Equation (8). Using this repre-
sentation, we show that when the treated unit lies outside the

convex hull of the control units, Ridge ASCM improves the
pretreatment fit relative to SCM alone by allowing for nega-
tive weights and extrapolating away from the convex hull. We
also show that ridge regression alone has a representation as a
weighting estimator that allows for negative weights.

Allowing for negative weights is an important departure from
the original SCM proposal, which constrains weights to be on
the simplex. In particular, ridge regression alone allows for
arbitrarily negative weights and may have negative weights even
when the treated unit is inside of the convex hull. By contrast,
Ridge ASCM directly penalizes distance from the sparse, non-
negative SCM weights, controlling the amount of extrapolation
by the choice of λridge, and only resorts to negative weights if the
treated unit is outside of the convex hull.

4.1. Ridge ASCM as a Penalized SCM Estimator

We now express both Ridge ASCM and ridge regression alone
as special cases of the penalized SCM problem in Equation (8).
The Ridge ASCM estimate of the counterfactual is the solution
to Equation (8), replacing the simplex constraint with a penalty
f (γi) = (

γi − γ̂ scm
i
)2 that penalizes deviations from the SCM

weights.

Lemma 1. The ridge-augmented SCM estimator (11) is

Ŷaug
1T (0) =

∑
Wi=0

γ̂
aug
i YiT , (16)

where

γ̂
aug
i = γ̂ scm

i +(X1 −X′
0·γ̂

scm
)′(X′

0·X0·+λridgeIT0)
−1Xi·. (17)

Moreover, the Ridge ASCM weights γ̂
aug are the solution to

min
γ s.t.

∑
i γi=1

1
2λridge

∥∥X1· − X′
0·γ
∥∥2

2 + 1
2
∥∥γ − γ̂

scm∥∥2
2 . (18)

When the treated unit is in the convex hull of the control units—
so the SCM weights exactly balance the lagged outcomes—
the Ridge ASCM and SCM weights are identical. When SCM
weights do not achieve exact balance, the Ridge ASCM solution
will use negative weights to extrapolate from the convex hull of
the control units. The amount of extrapolation is determined
both by the amount of imbalance and by the hyperparameter
λridge. When SCM yields good pretreatment fit or when λridge

is large, the adjustment term will be small and γ̂
aug will remain

close to the SCM weights.
We can similarly characterize ridge regression alone as a

solution to a penalized SCM problem where the penalty term,
f (γi) =

(
γi − 1

N0

)2
, penalizes the variance of the weights.

Other penalized linear models, such as the LASSO or elastic
net, do not have this same representation as a penalized SCM
estimator.

Lemma 2. The ridge regression estimator Ŷridge
1T (0) ≡ η̂

ridge
0 +

X1 · η̂ridge can be written as Ŷridge
1T (0) =∑Wi=0 γ̂

ridge
i YiT , where

the ridge weights γ̂
ridge are the solution to

min
γ | ∑i γi=1

1
2λridge

∥∥∥X1 − X′
0·γ
∥∥∥2

2
+ 1

2

∥∥∥∥γ − 1
N0

∥∥∥∥2

2
. (19)
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For ridge regression alone, the hyperparameter λridge controls
the variance of the weights rather than the degree of extrapola-
tion from the simplex. Thus, in order to reduce variance, ridge
regression weights might still be negative even if the treated unit
is inside of the convex hull and SCM achieves perfect fit.

Figure 1 visualizes this behavior in two dimensions. Fig-
ure 1(a) shows the treated unit outside the convex hull of the
control units, along with the weighted average of control units
using ridge regression and Ridge ASCM weights. For large
λridge, ridge regression alone begins at the center of the control
units (i.e., uniform weights), while Ridge ASCM begins at the
SCM solution; both move smoothly toward an exact fit solution
as λridge is reduced. Figure 1(b) shows the distance from the
simplex of these ridge regression and Ridge ASCM weights.
Together these figures highlight that ridge regression weights
can leave the simplex (i.e., have some negative weights) before
the corresponding weighted average is outside of the convex
hull, marked in red in both figures. That is, ridge regression
weights use negative weights to minimize the variance although
it is possible to achieve the same level of balance with nonneg-
ative weights. By contrast, Ridge ASCM weights begin at the
SCM solution, which is on the boundary of the simplex, then
extrapolate outside the convex hull. Eventually, as λridge → 0,
both ridge and Ridge ASCM use negative weights to achieve
perfect balance, improving the fit relative to SCM alone. The
weight vectors differ, however, with the Ridge ASCM weights
closer to the simplex.

When achieving excellent pretreatment fit with SCM is pos-
sible, Abadie, Diamond, and Hainmueller (2015) argued that
we should prefer SCM weights over possibly negative weights: a
slight balance improvement is not worth the extrapolation and
the loss of interpretability. In this case, the Ridge ASCM weights
will be close to the simplex, while the ridge regression weights
may be quite far away. When this is not possible, however, and
SCM has poor fit, some degree of extrapolation is critical; Ridge
ASCM allows the researcher to directly penalize the amount of

extrapolation in these cases. See King and Zeng (2006) for a
discussion of extrapolation in constructing counterfactuals.

4.2. Ridge ASCM Improves Pretreatment Fit Relative to
SCM Alone

Just as the hyperparameter λridge parameterizes the level of
extrapolation, it also parameterizes the level of improvement in
pretreatment fit over the SCM solution. Because we are remov-
ing the nonnegativity constraint and allowing for extrapolation
outside of the convex hull, the pretreatment fit from Ridge
ASCM will be at least as good as the pretreatment fit from
SCM alone, that is, ||X1 − X′

0·γ̂
aug||2 ≤ ||X1 − X′

0·γ̂
scm||2.

We can exactly characterize the pretreatment fit of Ridge ASCM
using the singular value decomposition of the matrix of control
outcomes, which will be an important building block in the
statistical results below.

Lemma 3. Let 1√
N0

X0· = UDV ′ be the singular value decompo-
sition of the matrix of control pre-intervention outcomes, where
m is the rank of X0·, U ∈ R

N0×m, V ∈ R
T0×m, and D =

diag(d1, . . . , dm) ∈ R
m×m is the diagonal matrix of singular

values, where d1 and dm are the largest and smallest singular
values, respectively. Furthermore, let X̃i = V ′Xi be the rotation
of Xi along the singular vectors of X0·. Then γ̂

aug, the Ridge
ASCM weights with hyperparameter λridge = λN0 satisfy∥∥∥X1· − X′

0·γ̂
aug
∥∥∥

2
= λ

∥∥∥(D + λI)−1 (X̃1 − X̃′
0·γ̂ scm)

∥∥∥
2

≤ λ

d2
m + λ

||X1 − X′
0·γ̂ scm||2, (20)

and the weights from ridge regression alone γ̂
ridge satisfy∥∥∥X1 − X′

0·γ̂
ridge
∥∥∥

2
= λ

∥∥(D + λI)−1 X̃1
∥∥

2

≤ λ

d2
m + λ

∥∥X1
∥∥

2. (21)

Figure 1. Ridge ASCM vs. ridge regression alone for a two-dimensional example with the treated unit outside of the convex hull of the control units. Results shown varying
λridge from 103 to 10−1. Green denotes that the weights are inside the simplex, red that the weights are outside the simplex but the weighted average is inside the convex
hull, and blue that the weighted average is outside the convex hull. (a) Treated and control units with the convex hull marked as a dashed line. Ridge and Ridge ASCM
estimates marked as solid lines. (b) Distance of Ridge and Ridge ASCM weights from the simplex.
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From Equation (20), we see that the pretreatment imbalance
for Ridge ASCM weights is smaller than that of SCM weights
by at least a factor of λ

d2
m+λ

. Thus, Ridge ASCM will achieve
strictly better pretreatment fit than SCM alone, except in corner
cases where pretreatment fit will be equal, such as when the
pretreatment SCM residual X1 − X′

0·γ̂
scm is orthogonal to the

lagged outcomes of the control units X0·. Since ridge regression
penalizes deviations from uniformity, rather than deviations
from SCM weights, the relationship for pretreatment imbalance
and fit between SCM and ridge regression alone is less clear.

5. Estimation Error for Ridge ASCM

We now relate Ridge ASCM’s improved pretreatment fit to
improved estimation error under the DGPs in Section 2.2.
Under a linear model, improving pretreatment fit directly
reduces bias, and the Ridge ASCM penalty term negotiates a
bias-variance trade-off. Under a latent factor model, improving
pretreatment fit again reduces bias, though there is now a risk
of over-fitting. The penalty term also directly parameterizes this
trade-off. Thus, choosing the hyperparameter λridge is impor-
tant in practice. We describe a cross-validation hyperparameter
selection procedure in Section 5.3. Finally, we discuss inference
in Section 5.4.

5.1. Error Under Linearity in Pretreatment Outcomes

We first illustrate the key balancing idea in the simple case in
our first DGP, where the posttreatment outcome is a linear
combination of lagged outcomes plus additive noise, as in
Assumption 1(a). We consider a generic weighting estimator
with weights γ̂ that are independent of the posttreatment
outcomes Y1T , . . . , YNT ; both SCM and Ridge ASCM take
this form. The difference between the counterfactual outcome
Y1T(0) and the weighting estimator Ŷ1T(0) decomposes into
(i) systemic error due to imbalance in the lagged outcomes X,
and (ii) idiosyncratic error due to the noise in the posttreatment
period:

Y1T(0) −
∑

Wi=0
γ̂iYiT = β · (X1 − γ̂iXi

)︸ ︷︷ ︸
imbalance in X

+ ε1T −
∑

Wi=0
γ̂iεiT︸ ︷︷ ︸

posttreatment noise

. (22)

With this setup, a weighting estimator that exactly balances
the lagged outcomes X will eliminate all systematic error.
Furthermore, if the vector of autoregression coefficients β is
sparse, then it suffices to balance only the lagged outcomes with
non-zero coefficients; for example, under an AR(K) process,
(β1, . . . , βT0−K−1) = 0, it is sufficient to balance only the first
K lags.

If the weighting estimator does not perfectly balance the pre-
treatment outcomes X, then there will be a systematic compo-
nent of the error, with the magnitude depending on the imbal-
ance. Below we construct a finite sample error bound for Ridge
ASCM (and for SCM, the special case with λridge = ∞), build-

ing on Lemma 3. This bound on the estimation error holds with
high probability over the noise in the posttreatment period εT .

Proposition 1. Under the autoregressive model in Assump-
tion 1(a), for any δ > 0 the Ridge ASCM weights with
hyperparameter λridge = λN0 satisfy the bound∣∣∣∣∣∣Y1T(0) −

∑
Wi=0

γ̂
aug
i YiT

∣∣∣∣∣∣
≤ ∥∥β∥∥2

∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃′

0·γ̂
scm

)

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ δσ
(
1 + ∥∥γ̂ aug∥∥

2
)︸ ︷︷ ︸

posttreatment noise

, (23)

with probability at least 1 − 2e− δ2
2 , where X̃i = V ′Xi is the

rotation of Xi along the singular vectors of X0·, as above, and
σ is the sub-Gaussian scale parameter.

Proposition 1 shows the finite sample error of Ridge ASCM
weights is controlled by the imbalance in the lagged outcomes
and the L2 norm of the weights; Lemma A.3 in the supple-
mentary material gives a deterministic bound for ||γ̂ aug||2. See
Athey, Imbens, and Wager (2018) for analogous results on bal-
ancing weights in high dimensional cross-sectional settings.

In the special case that SCM weights have perfect pretreat-
ment fit, ASCM and SCM weights will be equivalent, and the
estimation error will only be due to the variance of the weights
and posttreatment noise. When SCM weights do not achieve
perfect pretreatment fit, Ridge ASCM with finite λ extrapolates
outside the convex hull, improving pretreatment fit and thus
reducing bias. This is subject to the usual bias-variance trade-
off: The second term in (23) is increasing in the L2 norm of the
weights, which will generally be larger for ASCM than for SCM.
The hyperparameter λ directly negotiates this trade-off.

5.2. Error Under a Latent Factor Model

Following Abadie, Diamond, and Hainmueller (2010), we now
consider the case where control potential outcomes are gener-
ated according to a linear factor model, as in Assumption 1(b):
Yit(0) = φi · μt + εit . Under this model, the finite-sample error
of a weighting estimator depends on the imbalance in the latent
factors φ and a noise term due to the noise at time T:

Y1T(0) − Ŷ1T(0) = Y1T(0) −
∑

Wi=0
γ̂iYiT

=
⎛⎝φ1 −

∑
Wi=0

γ̂iφi

⎞⎠ · μT︸ ︷︷ ︸
imbalance in φ

+ ε1T −
∑

Wi=0
γ̂iεit︸ ︷︷ ︸

noise

. (24)

Balancing the observed pretreatment outcomes X will not nec-
essarily balance the latent factor loadings φ. Following Abadie,
Diamond, and Hainmueller (2010), we show in the supplemen-
tary material that, under Equation (6), we can decompose the

https://doi.org/10.1080/01621459.2021.1929245
https://doi.org/10.1080/01621459.2021.1929245
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imbalance term as follows:⎛⎝φ1 −
∑

Wi=0
γ̂iφi

⎞⎠ · μT = 1
T0

μ′
⎛⎝X1 −

∑
Wi=0

γ̂iXi

⎞⎠
︸ ︷︷ ︸

imbalance in X

·μT

− 1
T0

μ′
⎛⎝ε1(1:T0) −

∑
Wi=0

γ̂iεi(1:T0)

⎞⎠
︸ ︷︷ ︸

approximation error

·μT , (25)

where εi(1:T0) = (εi1, . . . , εiT0) is the vector of pretreatment
noise terms for unit i. The first term is the imbalance of observed
lagged outcomes and the second term is an approximation error
arising from the latent factor structure. In the noiseless case
where σ = 0 and all εit = 0 deterministically, the approx-
imation error is zero, and it is possible to express YiT(0) as a
linear combination of the pretreatment outcomes, recovering
the linear-in-lagged-outcomes case above. However, with σ > 0
we cannot write the period-T outcome as a linear combination
of earlier outcomes plus independent, additive error.

With this setup, we can bound the finite-sample error in
Equation (24) for Ridge ASCM weights (and for SCM weights
as a special case). This bound is with high probability over the
noise in all time periods εit , and accounts for the noise in the
pre- and posttreatment outcomes separately.

Theorem 1. Under the linear factor model in Assumption 1(b),
for any δ > 0 the Ridge ASCM weights with hyperparameter
λridge = λN0 satisfy the bound∣∣∣∣∣∣Y1T(0) −

∑
Wi=0

γ̂
aug
i Y1T(0)

∣∣∣∣∣∣
≤ JM2

√
T0

( ∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃′

0·γ̂
scm

)

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ 4(1 + δ)

∥∥∥∥∥diag

(
djσ

d2
j + λ

)
(X̃1 − X̃′

0·γ̂
scm

)

∥∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+ 2σ

(√
log 2N0 + δ

2

)
︸ ︷︷ ︸
SCM approximation error

)
+ δσ

(
1 + ||γ̂ aug||2

)
︸ ︷︷ ︸

posttreatment noise

(26)

with probability at least 1 − 6e− δ2
2 − e−2(log 2+N0 log 5)δ2 , where

σ is the sub-Gaussian scale parameter.

Theorem 1 shows that, relative to the linear case in Proposi-
tion 1, there is an additional source of error under a latent factor
model: approximation error due to balancing lagged outcomes
rather than balancing underlying factors. In particular, it is now
possible that a control unit only receives a large weight because
of idiosyncratic noise, rather than because of similarity in the
underlying factors. See Arkhangelsky et al. (2019) and Ferman
(2019) for asymptotic analogues of this finite sample bound. As
we discuss below, each of the first three terms of the bound in

Theorem 1 are directly computable from the observed data, save
for the unknown σ parameter.

In the special case where SCM achieves perfect pretreatment
fit, considered by Abadie, Diamond, and Hainmueller (2010),
the ASCM and SCM weights are equivalent and the error is only
due to posttreatment noise and the approximation error. The
bound in Theorem 1 accounts for the worst-case scenario where
the control unit with the largest weight is only similar to the
treated unit due to idiosyncratic noise. The approximation error,
and thus the bias, converges to zero in probability as T0 → ∞
under suitable conditions on the factor loadings μt (see also
Ferman and Pinto 2018). Intuitively, as we observe more Xit—
and can exactly balance each one—we are better able to match
on the index φi · μt and, as a result, on the underlying factor
loadings. Although we assume independent errors here, in the
supplementary material we show that with dependent errors
the worst-case error additionally scales with covariance of the
error terms.

Without exact balance, Theorem 1 shows that a long pre-
period may not be enough to control the error due to imbalance.
In this case, Ridge ASCM with λ < ∞ will extrapolate outside
the convex hull, reducing error due to imbalance in the lagged
outcomes but possibly over-fitting to noise. Thus, the optimal
level of extrapolation will depend on the synthetic control fit and
the amount of noise.

Figure 2 illustrates this using SCM weights from the empir-
ical example we discuss in Section 7, where pretreatment fit is
good but not perfect. For each value of σ , the figure plots the
sum of the imbalance, SCM approximation error, and excess
approximation error terms in the bound in Theorem 1, all
directly computable from the data for a given σ . At each noise
level, a small amount of extrapolation leads to a smaller error
bound, but as λ shrinks there is a point where further extrapo-
lation leads to over-fitting and eventually to a worse error bound
than without extrapolation. The risk of overfitting is greater
when the noise is large (e.g., σ = 0.5), though even here a
sufficiently regularized ASCM estimate has a lower error bound
than SCM alone (represented as the λ → ∞ bound at the
left boundary). When noise is less extreme, the benefits of aug-
mentation are larger and the optimal amount of regularization
shrinks.

It is worth noting that Theorem 1 gives a worst-case bound.
In Section 7.1 we inspect the typical performance of the Ridge
ASCM estimator via extensive simulation studies and find
that gains to pretreatment fit through augmentation outweigh
increased approximation error in a range of practical settings,
including when noise is very large.

Theorem 1 suggests two diagnostics to supplement the esti-
mated bias from Equation (9), based on the first two terms in
the bound. For the first term, we can directly assess imbalance
in X via the pretreatment RMSE, 1√

T0
||X1 − X′

0·γ̂ aug||2. For the
second term, the excess approximation error depends on the
unknown noise level, σ . However, as we show in the supplemen-
tary material, the excess approximation error is a scaled version
of the root mean square distance between the Ridge ASCM
weights and the SCM weights, 1√

N0
||γ̂ aug − γ̂ scm||2, which is

a measure of extrapolation. We report these diagnostics for the
empirical application in Section 7. As Figure 2 previews, they

https://doi.org/10.1080/01621459.2021.1929245
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Figure 2. Sketch of the error due to imbalance and approximation error (26) for the linear factor model; the standard deviation of the treated unit’s pretreatment outcomes
is normalized to one. We fit SCM weights on the empirical example in Section 7 and compute the vector of pretreatment fit. Each line shows the sum of the error due to
imbalance in X, excess approximation error, and SCM approximation error in Theorem 1 (with δ = 0) for different values of σ . These are normalized so that the SCM solution
(with λ large) equals 100%; values below 100% show improvement over the unadjusted weights for a given λ.

support the use of ASCM in this instance, despite what visually
appears to be good pretreatment fit for SCM.

5.3. Hyperparameter Selection

We propose a cross-validation approach for selecting λ inspired
by the in-time placebo check of Abadie, Diamond, and Hain-
mueller (2015). Let Ŷ(−k)

1t =∑Wi=0 γ̂
aug
i(−k)Yit be the estimate of

Y1t where time period k is excluded from fitting the estimator
in Equation (17). Abadie, Diamond, and Hainmueller (2015)
proposed to compare the difference Y1t − Ŷ(−t)

1t for some t ≤ T0
as a placebo check. We can extend this idea to compute the leave-
one-out cross validation MSE over time periods:

CV(λ) =
T0∑

t=1

(
Y1t − Ŷ(−t)

1t

)2
. (27)

We can then choose λ to minimize CV(λ) or follow a more
conservative approach such as the “one-standard-error” rule
(Hastie, Friedman, and Tibshirani 2009). This proposal is sim-
ilar to the leave-one-out cross validation proposed by Doud-
chenko and Imbens (2017), who select hyperparameters by
holding out control units and minimizing the MSE of the control
units in the posttreatment time T. Finally, only excluding time
period t might be inappropriate for some outcome models, for
example, the linear model in Section 5.1. In these settings, we
can extend the procedure to exclude all time periods ≥ t when
estimating γ̂

aug
(−t), as in Kellogg et al. (2020).

5.4. Inference

There is a growing literature on inference for the SCM and
variants, going beyond the original proposal in Abadie and
Gardeazabal (2003) and Abadie, Diamond, and Hainmueller
(2010, 2015); see, for example, Kathleen (2020), Toulis and
Shaikh (2018), Cattaneo, Feng, and Titiunik (2019), and Cher-
nozhukov, Wuthrich, and Zhu (2018).

We focus here on the conformal inference approach of Cher-
nozhukov, Wüthrich, and Zhu (2019), which has three key steps.
First, for a given sharp null hypothesis, H0 : τ = τ0, we
create an adjusted posttreatment outcome for the treated unit

Ỹ1T = Y1T − τ0 and extend the original dataset to include the
adjusted outcome Ỹ1T . Second, we apply the estimator (17) to
the extended dataset to obtain adjusted weights γ̂ (τ0). Finally,
we compute a p-value by assessing whether the adjusted residual
Y1T − τ0 −∑Wi=0 γ̂i(τ0)YiT “conforms” with the pretreatment
residuals

p(τ0) = 1
T

T0∑
t=1
1

⎧⎨⎩
∣∣∣∣∣∣Y1T − τ0 −

∑
Wi=0

γ̂i(τ0)YiT

∣∣∣∣∣∣
≤
∣∣∣∣∣∣Y1t −

∑
Wi=0

γ̂i(τ0)Yit

∣∣∣∣∣∣
⎫⎬⎭+ 1

T
. (28)

Since the counterfactual outcome Y1T(0) is random, inverting
this test to construct a confidence interval for τ is equivalent
to constructing a conformal prediction set (Vovk, Gammerman,
and Shafer 2005) for Y1T(0) by using the quantiles of pretreat-
ment residuals:

Ĉconf
Y =

⎧⎨⎩y ∈ R

∣∣∣∣∣∣
∣∣∣∣∣∣y −

∑
Wi=0

γ̂i(Y1T − y)YiT

∣∣∣∣∣∣
≤ q+

T,α

⎛⎝⎧⎨⎩
∣∣∣∣∣∣Y1t −

∑
Wi=0

γ̂i(Y1T − y)Yit

∣∣∣∣∣∣
⎫⎬⎭
⎞⎠⎫⎬⎭ , (29)

where q+
T,α({xt}) is the �(1−α)Tth order statistic of x1, . . . , xT .

Chernozhukov, Wüthrich, and Zhu (2019) provided several
conditions for approximate or exact finite-sample validity of the
p-values, and hence coverage of the prediction interval Ĉconf

Y .
We briefly discuss two of these conditions here, with a more
complete technical treatment in Appendix A in the supplemen-
tary material. First, Chernozhukov, Wüthrich, and Zhu (2019)
showed exact validity when the residuals Y1t −∑Wi=0 γ̂i(τ0)Yit
are exchangeable for all t = 1, . . . , T. One sufficient condition
for this is that the outcome vectors (Y1t , . . . , YNt) are themselves
exchangeable for t = 1, . . . , T.

When the residuals are not exchangeable, Chernozhukov,
Wüthrich, and Zhu (2019) provided a finite sample bound
that relates in-sample prediction error to the validity of p(τ0).
In Appendix A in the supplementary material, we adapt their
SCM bounds to Ridge ASCM by showing that the ridge penalty

https://doi.org/10.1080/01621459.2021.1929245
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controls the difference between SCM and Ridge ASCM weights.
Under a variant of the basic model (3), the resulting p-value
will be valid as the number of pretreatment periods T0 → ∞.
Finally, in Section 7.1, we explore the finite sample coverage
probabilities of Ĉconf

Y under various DGPs and find that they are
near their nominal levels.

6. Auxiliary Covariates

Thus far, we have focused exclusively on lagged outcomes as
predictors. We now consider the case where there are also a
small number of auxiliary covariates Zi ∈ R

K for unit i. These
auxiliary covariates may include summaries of lagged outcomes
or time-varying covariates such as the pretreatment mean X̄i.
Let Z0· ∈ R

N0×K denote the matrix of donor units’ covariates,
which we assume are centered, Z̄0· = 0.

These auxiliary covariates can be incorporated into both the
balance objective for SCM and the outcome model used for
augmentation in ASCM. For the former, we can extend SCM
to choose weights to solve

min
γ∈
N0

θx||X1 − X′
0·γ ||22 + θz||Z1 − Z0·γ ||22 + ζ

∑
Wi=0

f (γi),

(30)
where 
N0 is the N0-simplex. For the latter, we can augment
the SCM weights with an outcome model m̂(Xi, Zi) that is a
function of both the lagged outcomes and auxiliary covariates.
For example, we can extend Ridge ASCM to choose m̂(X, Z) =
η̂0 + X′η̂x + Z′η̂z and fit via ridge regression:

min
η0,ηx ,ηz

1
2
∑

Wi=0
(Yi−(η0+X′

iηx+Z′
iηz))

2+λx||ηx||22+λz||ηz||22.

(31)
Both this SCM criterion and augmentation estimator incorpo-
rate user-specified weights that determine the importance of
balancing each set of covariates (Equation (30)) or the amount of
regularization for each set of coefficients (Equation (31)). There
are many potential choices for these weights. We discuss two,
appropriate to different settings depending on the number of
auxiliary covariates.

A sensible default when the dimension of the auxiliary
covariates is moderate is to incorporate the lagged outcomes
X and the auxiliary covariates Z equally in Equations (30)
and (31), setting θx = θz = 1 and λx = λz = λridge

(after standardizing auxiliary covariates and lagged outcomes
to have equal variance). With this setup the algorithmic results
in Section 4 apply for the combined vector of lagged outcomes
and auxiliary covariates, (Xi, Zi) ∈ R

T0+K . In particular, Ridge
ASCM is again a penalized SCM estimator that adjusts the
synthetic control weights that solve optimization problem (30)
to achieve better balance by extrapolating outside of the convex
hull.

An alternative approach when the dimension of the auxiliary
covariates is small relative to N (i.e., K � N) is to fit a regression
model that regularizes the lagged outcome coefficients ηx but
does not regularize the auxiliary covariate coefficients ηz (i.e., set
λz = 0). Lemma 4 below writes the resulting augmented estima-
tor as its corresponding penalized SCM optimization problem,
with weights that perfectly balance the auxiliary covariates. This

has two key implications. First, since the auxiliary covariates
Z are exactly balanced regardless of the balance that the SCM
weights achieve alone, we can exclude them from the optimiza-
tion problem (30). Second, as we show below, the pretreatment
fit on the lagged outcomes depends on how well the SCM
weights balance the residualized lagged outcomes X̌, defined in
Lemma 4. This suggests modifying Equation (30) to balance X̌
rather than the lagged outcomes X, which leads to a two-step
procedure: (i) residualize the pre- and posttreatment outcomes
on the auxiliary covariates Z; and (ii) estimate Ridge ASCM
on the residualized outcomes. This two-step procedure follows
from a related proposal in Doudchenko and Imbens (2017).

Lemma 4. Let η̂x and η̂z be the solutions to Equation (31) with
λx = λridge and λz = 0. For any weight vector γ̂ that sums to
one, the ASCM estimator from Equation (10) with m̂(Xi, Zi) =
X′

iη̂x + Z′
iη̂z is

∑
Wi=0

γ̂iYiT +
⎛⎝X1−

∑
Wi=0

γ̂iXi

⎞⎠′
η̂x+

⎛⎝Z1−
∑

Wi=0
γ̂iZi

⎞⎠′
η̂z

=
∑

Wi=0
γ̂ cov

i YiT , (32)

where the weights γ̂
cov are

γ̂ cov
i = γ̂i + (X̌1 − X̌0·)(X̌′

0·X̌0· + λridgeIT0)
−1X̌i

+(Z1 − Z′
0·γ )′(Z′

0·Z0·)−1Zi, (33)

and X̌i is the residual components of a regression of pretreat-
ment outcomes on the control auxiliary covariates

X̌i = Xi − Z′
i(Z′

0·Z0·)−1Z′
0·X0·. (34)

These weights exactly balance the auxiliary covariates, Z1 −
Z′

0·γ̂
cov = 0; the imbalance in the lagged outcomes is

∥∥X1 − X′
0·γ̂

cov∥∥
2 ≤

(
λridge

λridge + N0ď2
r

)∥∥∥X̌1 − X̌′
0·γ̂
∥∥∥

2
, (35)

where ďr is the minimal singular value of X̌0.

Comparing to the results in Section 4, Lemma 4 shows that
the two-step approach penalizes extrapolation from the convex
hull in the residualized space X̌, rather than in the lagged out-
comes themselves. In essence, by residualizing out the auxiliary
covariates Z, the two-step approach allows for a possibly large
amount of extrapolation in the auxiliary covariates, while care-
fully penalizing extrapolation in the part of the lagged outcomes
that is orthogonal to the covariates.

In Appendix B.3 in the supplementary material, we consider
the performance of this estimator when the outcomes follow a
linear factor model with either a linear or a nonlinear depen-
dence on auxiliary covariates, focusing on the special case where
λridge → ∞ and the weights γ̂

cov do not extrapolate from the
convex hull after residualization. When covariates enter linearly
and when K is small relative to N0, we show that exactly balanc-
ing a small number of auxiliary covariates and targeting imbal-
ance in the residuals X̌ decreases error due to pretreatment fit.
When covariates enter nonlinearly, however, there is additional
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approximation error due to the linear regression specification.
Thus, it is important to appropriately transform the covariates
in practice. Furthermore with larger numbers of covariates, the
approach that incorporates them in parallel to lagged outcomes
will be more appropriate.

7. Simulations and Empirical Illustrations

We first conduct extensive simulation studies to assess the per-
formance of different methods, finding substantial gains from
ASCM. We then use our approach to examine the effect of an
aggressive tax cut on economic output in Kansas in 2012.

7.1. Calibrated Simulation Studies

We now present simulation studies calibrated to our empirical
illustration in Section 7.2. Specifically, we use the generalized
synthetic control method (Xu 2017) to estimate a factor model
with three latent factors based on the series of log gross state
product (GSP) per capita, N = 50, T0 = 89. We then simulate
outcomes using the distribution of estimated parameters and
model selection into treatment as a function of the latent factors;
see Appendix C in the supplementary material for additional
details. We also present results from three additional DGPs, each
calibrated to estimates from the same data: (i) the factor model
with quadruple the standard deviation of the noise term, (ii)
a unit and time fixed effects model, and (iii) an autoregressive
model with 3 lags.

We explore the role of augmentation using different out-
come estimators. For each DGP, we consider five estimators:
(i) SCM alone, (ii) ridge regression alone, (iii) Ridge ASCM,
(iv) fixed-effects alone, and (v) De-meaned SCM (i.e., SCM
augmented with fixed effects) from Doudchenko and Imbens
(2017) and Ferman and Pinto (2018), as shown in Equation (13).
See Appendix F in the supplementary material for simulations
with additional outcome models for ASCM. Figure 3 shows the

Monte Carlo estimate of the absolute bias as a percentage of the
absolute bias for SCM, with one panel for each simulation DGP.
Figure F.1 in the supplementary material shows the correspond-
ing estimator RMSE.

There are several takeaways. First, augmenting SCM with a
ridge outcome regression reduces bias relative to SCM alone—
without conditioning on excellent pretreatment fit—in all four
simulations. This underscores the importance of the recom-
mendation in Abadie, Diamond, and Hainmueller (2010, 2015)
to use SCM only in settings with excellent pretreatment fit.
Under the baseline factor model and the fixed effect model, the
ridge augmentation greatly reduces bias, by more than 75% in
the factor model simulation and over 90% in the fixed effects
simulation. In the AR(3) model and in the factor model with
greater noise, the gains to augmentation relative to SCM are
more limited. Second, Ridge ASCM has lower bias than ridge
regression alone across all of the simulation settings. Third,
when the fixed effects estimator is incorrectly specified, combin-
ing it with SCM has much lower bias than either method alone.
And even when the fixed-effects estimator is correctly specified,
de-meaned SCM has similar bias to the (correctly specified)
fixed-effects approach. Finally, Figure F.1 (supplementary mate-
rial) shows that in all simulations ASCM has lower RMSE than
SCM, as the large decrease in bias more than makes up for the
slight increase in variance.

Complementing the worst-case analysis in Section 5, we now
consider how the typical performance of augmentation relates
to the amount of extrapolation and the quality of the original
SCM fit. Figure 4 shows the bias and RMSE as a function of λ for
the primary factor model simulation, conditional on the quartile
of SCM fit. Larger values of λ (and hence smaller adjustments)
are to the left, with the left-most points in the plots representing
SCM. First, as expected, Augmented SCM substantially reduces
bias regardless of SCM pretreatment fit. However, the gains are
more modest when the SCM fit is in the best quartile: in this
case the bias is non-monotonic in λ and there is some optimal
choice of λ that minimizes the bias. Second, it is possible to

Figure 3. Overall absolute bias, normalized to SCM bias for (a) the factor model simulation, (b) the factor model simulation with quadruple the standard deviation, (c) the
fixed effects simulation, and (d) the AR simulation. Arrows indicate values larger than 130%. The SCM estimates reported here are not restricted to simulation draws with
excellent pretreatment fit; Abadie, Diamond, and Hainmueller (2015) advise against using SCM in such settings.
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Figure 4. Bias and RMSE of Ridge ASCM, as a percentage of SCM bias and RMSE, versus λ under a linear factor model. Results are divided by the quartile of the SCM fit
across all simulations.

Table 1. Coverage for 95% conformal prediction intervals (29) based on 1000
repetitions.

Factor σ = Factor σ = Fixed
Method AR(3) Model: σ̂ Model: 4σ̂ Effects

SCM 0.934 0.926 0.930 0.889
SCM + Ridge 0.932 0.950 0.936 0.939

under-regularize with ASCM, as evident in the RMSE achieving
a minimum for an intermediate value of λ. When pretreatment
fit is good, augmentation with too-small λ leads to higher RMSE
than SCM alone. However, when SCM fit is relatively poor, even
minimally regularized ASCM achieves much better bias and
RMSE than does SCM.

Finally, Table 1 shows the finite sample coverage of the con-
formal prediction intervals for Y1T(0). For the four simulation
settings, we compute 95% prediction intervals for the posttreat-
ment counterfactual outcome Y1T(0) using the both the SCM
and ridge ASCM estimators. We see that the intervals for SCM
alone can slightly undercover, due to finite sample bias from
poor treatment fit. In contrast, the intervals for ridge ASCM
have close to nominal coverage for Y1T(0).

Overall we find that SCM augmented with a penalized regres-
sion model has consistently good performance across DGPs.
Due to this performance and the method’s relative simplic-
ity, we therefore recommend augmenting SCM with penalized
regression as a reasonable default in settings where SCM alone
has poor pretreatment fit. In particular, we suggest using ridge
regression; among the other benefits, Ridge ASCM allows the
practitioner to diagnose the level of extrapolation due to the
outcome model.

7.2. Illustration: 2012 Kansas Tax Cuts

In 2010, Sam Brownback was elected governor of Kansas, having
run on a platform emphasizing tax cuts and deficit reduction
(see Rickman and Wang 2018, for further discussion and anal-
ysis). Upon taking office, he implemented a substantial per-
sonal income tax cut, both lowering rates and reducing credits

and deductions. This is a valuable test of “supply side” mod-
els: Brownback argued that the tax cuts would increase busi-
ness activity in Kansas, generating economic growth and addi-
tional tax revenues that would make up for the static revenue
losses. Kansas’ subsequent economic performance has not been
impressive relative to its neighbors; however, potentially con-
founding factors include a drought and declines in the locally
important aerospace industry. Finding a credible control for
Kansas is thus challenging, and SCM-type approaches offer a
potential solution.

We estimate the effect of the tax cuts on log GSP per capita
using the second quarter of 2012—when Brownback signed the
tax cut bill into law—as the intervention time. We use four
primary estimators: (i) SCM alone fit on the entire vector of
lagged outcomes, (ii) Ridge ASCM, (iii) Ridge ASCM including
auxiliary covariates in parallel to lagged outcomes and (iv) Ridge
ASCM on residualized outcomes, as proposed in Section 6. We
select the hyperparameter λ via the cross-validation procedure
in Section 5.3, following the “one-standard-error” rule with only
lagged outcomes, and selecting the minimal λ when including
auxiliary covariates. See Figure F.6 (supplementary material).
The covariates we include are the pretreatment averages of (i) log
state and local revenue per capita, (ii) log average weekly wages,
(iii) number of establishments per capita, (iv) the employment
level, and (v) log GSP per capita.

These estimators assume that noise is mean zero (Assump-
tion 1). Substantively, under the autoregressive model in
Assumption 1(a) this assumes that posttreatment shocks for
Kansas will be the same as for other states in expectation;
under the linear factor model in Assumption 1(b) this rules
out selection on pretreatment shocks. This also rules out
unobserved confounders that affect both posttreatment shocks
and the decision to enact the Brownback tax cut bill.

Figure 5, known as a “gap plot,” shows the difference between
Kansas and its synthetic control for all four estimators, along
with 95% point-wise confidence intervals intervals computed
via the conformal inference procedure from Chernozhukov,
Wüthrich, and Zhu (2019). Figure 6 shows log GSP per capita
for both Kansas and its synthetic control using SCM and Ridge

https://doi.org/10.1080/01621459.2021.1929245
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Figure 5. Point estimates along with point-wise 95% conformal confidence intervals for the effect of the tax cuts on log GSP per capita using SCM, Ridge ASCM, and Ridge
ASCM with covariates.

Figure 6. Point estimates along with point-wise 95% conformal prediction intervals for counterfactual log GSP per capita without the tax cuts using SCM, ridge ASCM, and
ridge ASCM with covariates, plotting with the observed log GSP per capita in black.

ASCM. Appendix F in the supplementary material shows addi-
tional results.

First, the pretreatment fit for SCM alone is relatively good
for most of the pre-period, with an overall pretreatment RMSE
of about 0.9 log points. However, the fit for SCM alone worsens
in 2004–2005, with imbalances of over 4 log points—a pretreat-
ment imbalance as large as the estimated impact. Using ridge
regression to assess the possible implications of this pretreat-
ment imbalance, we estimate bias due to pretreatment imbal-
ance of around 1 log point, or roughly a third of the magni-
tude of the estimated effect. To better understand the estimated
bias, we can inspect the ridge regression coefficients for lagged
outcomes; see Figure F.9 (supplementary material). While the
regression puts the most weight on the two most recent years,
the estimated bias due to imbalance in the mid-2000s is just as
large as for 2010 and 2011. This suggests that there may be gains
to augmentation.

As anticipated, augmenting SCM with ridge regression
indeed improves pretreatment fit, with a pretreatment RMSE of
0.65 log points, 25% smaller than the RMSE for SCM alone. This
improvement is especially pronounced in the mid 2000s, where
SCM imbalance is larger. In the end, despite a large reduction
in the pretreatment RMSE, the change in the weights is quite
small: the root mean square difference between SCM and Ridge
ASCM weights is only 0.01.

Next, we consider including the auxiliary covariates. Adding
these auxiliary covariates and augmenting further improves
both pretreatment fit and balance on the covariates; see Fig-
ure 7(a). Finally, balancing the auxiliary covariates via residu-
alization also improves pretreatment fit. Overall, the estimated
impact is consistently negative for all four approaches, with
weaker evidence that the effect persists to the end of the obser-
vation period.

https://doi.org/10.1080/01621459.2021.1929245
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Figure 7. (a) Covariate balance for SCM, Ridge ASCM, and ASCM with covariates. Each covariate is standardized to have mean zero and standard deviation one; we plot the
absolute difference between the treated unit’s covariate and the weighted control units’ covariates

∣∣∣Z1k −∑Wi=0 γ̂ Zik

∣∣∣. (b) Donor unit weights for (1) SCM alone and (2)

Ridge ASCM; left facet uses lagged outcomes only; right facet includes auxiliary covariates.

To check against over-fitting, Figures F.10–F.12 (supplemen-
tary material) show in-time placebo estimates for SCM alone,
Ridge ASCM, and Ridge ASCM with covariates, with placebo
treatment times in the second quarter of 2009, 2010, and 2011.
We estimate placebo effects that are near zero with all three
placebo treatment times with all three estimators.

Figure 7(a) shows the covariate balance for the four esti-
mators. While SCM and Ridge ASCM achieve excellent fit for
the pretreatment average log GSP per capita, neither estimator
achieves good balance on the other covariates, most notably
the average employment level across the quarters of the pre-
period. In contrast, including the auxiliary covariates into both
the SCM and ridge optimization problems greatly improves the
covariate balance, and—by design—residualizing on the auxil-
iary covariates perfectly balances them. Moreover, Ridge ASCM
on residualized outcomes achieves very good pretreatment fit on
the lagged outcomes as shown in Figure 5.

Finally, Figure 7(b) shows the weights on donor units for
SCM and Ridge ASCM as well as SCM and Ridge ASCM weights
when including covariates jointly with the lagged outcomes
(see also, Figure F.14, supplementary material). Here we see
the minimal extrapolation property of the ASCM weights. The
SCM weights are zero for all but six donor states. The Ridge
ASCM weights are similar but deviate slightly from the simplex.
As a result, the Ridge ASCM weights retain some of the inter-
pretability of the SCM weights. For the donor units with positive
SCM weight, Ridge ASCM places close to the same weight. For
the majority of those with zero SCM weight, Ridge ASCM also
places a close to zero weight. Only Louisiana receives a meaning-
ful negative weight, with nonnegligible negative weights for only
a few other donor units. By contrast, Figure F.13 (supplementary
material) shows the weights from ridge regression alone: many
of the weights are negative and the weights are far from sparse.

Including auxiliary covariates changes the relative importance
of different states by adding new information, but the minimal
extrapolation property remains.

8. Discussion

SCM is a popular approach for estimating policy impacts at the
jurisdiction level, such as the city or state. By design, however,
the method is limited to settings where excellent pretreatment
fit is possible. For settings when this is infeasible, we introduce
Augmented SCM, which controls pretreatment fit while mini-
mizing extrapolation. We show that this approach controls error
under a linear factor model and propose several extensions,
including to incorporate auxiliary covariates.

There are several directions for future work. First, we can
incorporate a sensitivity analysis that directly parameterizes
departures from, say, the linear factor model, as in recent
approaches for sensitivity analysis for balancing weights (Sori-
ano et al. 2020). Second, we can adapt the ASCM framework
to settings with multiple treated units. For instance, there are
different approaches in settings when all treated units are treated
at the same time: some articles propose to fit SCM separately for
each treated unit (e.g., Abadie and L’Hour 2018), while others
simply average the units together (e.g., Robbins, Saunders, and
Kilmer 2017). The situation is more complicated with staggered
adoption, when units take up the treatment at different times;
we explore this extension in Ben-Michael, Feller, and Rothstein
(2019). Finally, we can consider more complex data structures,
such as applications with multiple outcomes series for the same
units (e.g., measures of both earnings and total employment
in minimum wage studies); hierarchical data structures with
outcome information at both the individual and aggregate level
(e.g., students within schools); or discrete or count outcomes.
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Supplementary Materials

The supplementary materials include additional results on estimation and
inference, a discussion of connections to balancing weights and inverse
propensity score weighting, and details of the proofs.
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