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A Inference

We now give additional technical details for the validity of the conformal inference approach of
Chernozhukov et al. (2019) with Ridge ASCM, showing approximate validity (as T0 → ∞) under
a set of assumptions.

The approximate validity of the conformal inference procedure in Section 5.4 depends on the
predictive accuracy of Ŷ aug

it (0) when fit using all periods t = 1, . . . , T , including the post-treatment
period T . Denoting Y1· ≡ (X1·, Y1) ∈ RT to be the full vector of treated unit outcomes and Y0· ≡
[X0·,Y0T ] ∈ RN0×T be the matrix of comparison unit outcomes, the Ridge ASCM optimization
problem in this setting is

min
γ s.t.

∑
i γi=1

1

2λridge
‖Y1· − Y ′0·γ‖22 +

1

2
‖γ − γ̂scm‖22 . (A.1)

We will also consider the constrained form:

min
γ
‖Y1· − Y ′0·γ‖22

subject to
1

2
‖γ − γ̂scm‖2 ≤

C√
N0∑

i

γi = 1

(A.2)

With these definitions we can characterize the in-sample prediction error of the counterfactual
model described by Chernozhukov et al. (2019), which is a version of Equation (3) in an asymp-
totic framework where T0 is growing while T is fixed. We state the model and assumptions for
asymptotically (in T0) valid inference below.

Assumption A.1. There exist weights γ∗ ∈ ∆N0 such that the potential outcomes under control
for the treated unit (i = 1) satisfy

Y1t(0) =
∑
Wi=1

γ∗i Yit + ε1t,

where ε1t are independent of the comparison unit outcomes, E[ε1tYit] = 0 for all Wi = 0 and
t = 1, . . . , T . Furthemore,
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1. The data is β-mixing with exponential speed

2. There exist constants c1, c2 > 0 such that E[(Yitε1t)
2] ≥ c1 and E[|Yitε1t|3] ≤ c2 for all i such

that Wi = 0 and t = 1, . . . , T

3. For all i such that Wi = 0, Xi1ε11, . . . , XiT ε1T is β-mixing with β-mixing coefficient satisfying
β(t) ≤ a1e

−a2tk for constants a1, a2, k > 0

4. There exists a constant c3 > 0 such that maxWi=0
∑T

t=1X
2
itε

2
1t ≤ c2

3T with probability 1−o(1)

5. logN0 = o
(
T

4k
3k+4

)
6. There exists a sequence `T > 0 such that Y ′0t(w − γ∗) ≤ `T

1
T ‖Y

′
0·(w − γ∗)‖

2
2 for all w ∈

∆N0 + B2( C√
N0

), for some constant C where Bp(a) = {x ∈ R | ‖x‖p ≤ a}, with probability

1− o(1) for T0 + 1 ≤ t ≤ T

7. The sequence `T satisfies `T (log min{T,N0})
1+k
2k
√
T → 0

This setup is nearly identical to the assumptions in Lemma 1 in Chernozhukov et al. (2018); the
only key change is for assumption 6 where the bound on the point-wise prediction error is assumed
to hold for all weights that are the sum of weights on the simplex ∆N0 and a vector in the L2 ball

B2

(
C√
N0

)
.

Under the model in Assumption A.1, we can characterize the prediction error of the constrained
form of Ridge ASCM (A.2) by directly following the development in Chernozhukov et al. (2019), who
show asymptotic validity for the conformal procedure with the SCM estimator when it is correctly
specified and γ∗ ∈ ∆N0 . Lemma A.1 below is equivalent to Lemma 1 in Chernozhukov et al. (2019),
and shows that under Assumption A.1 the in-sample prediction error for the constrained form of
Ridge ASCM (A.2) is the same as SCM, up to the level of extrapolation C allowed through the
constraint ‖γ̂aug − γ̂scm‖2 ≤

C√
N0

. Then, by Theorem 1 in Chernozhukov et al. (2019) we see that

the inference procedure will be valid asymptotically in T0.

Lemma A.1. Under Assumption A.1, the ridge ASCM weights solving the constrained problem
(A.2), γ̂aug satisfy

1

T

T∑
t=1

∑
Wi=0

γ̂∗i Yit −
∑
Wi=0

γ̂aug
i Yit

2

≤ K0(2 + C)√
T

(log min{T,N0})
1+k
2k (A.3)

and ∣∣∣∣∣∣µT · φ1 −
∑
Wi=0

γ̂aug
i YiT

∣∣∣∣∣∣ ≤ K0(2 + C)√
T

`T (log min{T,N0})
1+k
2k (A.4)

with probability 1− o(1), for some constant K0 depending on the constants in Assumption A.1.

Proof of Lemma A.1. This proof directly follows Lemma 1 in Chernozhukov et al. (2019). First,
notice that ∥∥Y1· − Y ′0·γ̂aug

∥∥2

2
≤
∥∥Y1· − Y ′0·γ̂scm

∥∥2

2
≤
∥∥Y1· − Y ′0·γ∗

∥∥2

2
= ‖ε1‖22 ,
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where ε1 = (ε11, . . . , ε1T ) ∈ RT is the vector of noise terms for the treated unit. Next,

Y1· − Y ′0·γ̂aug = Y1· − Y ′0·(γ̂aug − γ∗ + γ∗) = ε1 − Y ′0·(γ̂aug − γ∗)

Together, this implies that ‖ε1 − Y ′0·(γ̂aug − γ∗)‖22 ≤ ‖ε1‖22 and so by expanding the left-hand side
we see that by Hölder’s inequality∥∥Y ′0·(γ̂aug − γ∗)

∣∣2
2
≤ 2ε′1Y

′
0·(γ̂

aug − γ∗)
≤ 2 ‖Y0·ε1‖∞ ‖γ̂

aug − γ∗‖1
≤ 2 ‖Y0·ε1‖∞ (‖γ̂scm − γ∗‖1 + ‖γ̂aug − γ̂scm‖1)

Now, since both γ̂scm ∈ ∆N0 and γ∗ ∈ ∆, ‖γ̂scm − γ∗‖1 ≤ 2. From the constraint in Equation (A.2),
‖γ̂aug − γ̂scm‖1 ≤

√
N0 ‖γ̂aug − γ̂scm‖2 ≤ C. This implies that∥∥Y ′0·(γ̂aug − γ∗)

∥∥2

2
≤ 2(2 + C) ‖Y0·ε1‖∞

Lemma 17 in Chernozhukov et al. (2019) shows that

P
(
‖Y0·ε1‖∞ > K0 (log min {T,N0})

1+k
2k

√
T
)

= o(1).

Combining the pieces gives Equation (A.3). Next, combining Equation (A.3) with Assumption
A.1(6) gives Equation (A.4).
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B Additional results

B.1 Specialization of Ridge ASCM results to SCM

This appendix section specializes select results from the main text for Ridge ASCM for the special
case of SCM, with λ→∞.

First we specialize Proposition 1 to SCM weights by taking λ→∞.

Corollary A.1. Under the linear model (4) with independent sub-Gaussian noise with scale pa-
rameter σ, for any δ > 0, for weights γ ∈ ∆N0 independent of the post-treatment outcomes
(Y1T , . . . , YNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

, (A.5)

with probability at least 1− 2e−
δ2

2 .

We can similarly specialize Theorem 1.

Corollary A.2. Under the linear factor model (6) with independent sub-Gaussian noise with scale
parameter σ, for weights γ ∈ ∆N0 independent of the post-treatment outcomes (Y1T , . . . , YNT ) and
for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤
JM2

√
T0

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+
2JM2σ√

T0

(√
log 2N0 + δ

)
︸ ︷︷ ︸

approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.6)

with probability at least 1− 6e−
δ2

2 .

B.2 Error under a partially linear model with Lipshitz deviations from linearity

We now bound the estimation error for SCM and Ridge ASCM under the basic model (3) when
the outcome is only partially linear, with Lipshitz deviations from linearity.

Assumption A.2. For the post-treatment outcome, miT are generated as β ·Xi + f(Xi), so the
post-treatment control potential outcome is

YiT (0) = β ·Xi + f(Xi) + εiT , (A.7)

where f : RT0 → R is L-Lipshitz and where {εiT } are defined in Assumption 1(a).

Under this model, the L-Lipshitz function f(·) will induce an approximation error from deviating
away from the nearest neighbor match.

Theorem A.1. Let C = maxWi=0 ‖Xi‖2. Under Assumption A.2, for any δ > 0, the estimation
error for the ridge ASCM weights γ̂aug (17) with hyperparameter λridge = N0λ is
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∣∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂aug
i Y1T

∣∣∣∣∣∣ ≤ ‖β‖2
∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+

CL

∥∥∥∥∥diag

(
dj

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+

L
∑
Wi=0

γ̂scm
i ‖X1 −Xi‖2︸ ︷︷ ︸

SCM approximation error

+ δσ (1 + ‖γ̂aug‖2)︸ ︷︷ ︸
post-treatment noise

(A.8)

with probability at least 1− 2e−
δ2

2 .

We can again specialize this to the SCM weights alone by taking λ→∞.

Corollary A.3. Under Assumption A.2, for any δ > 0, the estimation error for weights on the
simplex γ̂ ∈ ∆N0 independent of the post-treatment outcomes (Y1T , . . . , YNT ) is

Y1T (0)−
∑
Wi=0

γ̂iYi ≤ ‖β‖2

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+L
∑
Wi=0

γ̂i‖X1 −Xi‖2︸ ︷︷ ︸
approximation error

+ δσ(1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

(A.9)

with probability at least 1− 2e−
δ2

2 .

Inspecting Corollary A.3, we see that in order to control the estimation error, the weights must
ensure good pre-treatment fit while only weighting control units that are near to the treated unit.
The ratio L/‖β‖2 controlling the relative importance of both terms. Abadie and L’Hour (2018)
propose finding weights by solving the penalized SCM problem,

min
γ∈∆N0

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2

2

+ λ
∑
Wi=0

γ̂i‖X1 −Xi‖22. (A.10)

Comparing this to Corollary A.3, we see that under the partially linear model (A.7) where f(·) is
L-Lipshitz, finding weights that limit interpolation error by controling both the overall imbalance
in the lagged outcomes as well as the weighted sum of the distances is sufficient to control the error.
In the above optimization problem, the hyperparameter λ takes the role of L/‖β‖2.
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B.3 Error under a linear factor model with covariates

We can quantify the behavior of the two-step procedure from Lemma 4 in controlling the error
under a more general form of the linear factor model (6) with covariates (see Abadie et al., 2010;
Botosaru and Ferman, 2019, for additional discussion). We can also consider the error under a
linear model with auxiliary covariates, as a direct consequence of Lemma 4.

Assumption A.3. The mit are generated as mit =
∑J

j=1 φijµjt+ft(Zi) for a time-varying function

ft : RK → R, so the potential outcomes under control are

Yit(0) =
J∑
j=1

φijµjt + ft(Zi) + εit, (A.11)

where {εit} are defined in Assumption 1(b).

To characterize how well the covariates approximate the true function f(Zi), we will consider
the best linear approximation in our data, and define the residual for unit i and time t as eit =
ft(Zi)−Z ′i(Z ′Z)−1Z ′ft(Z), where Z ∈ RN×K is the matrix of all auxiliary covariates for all units.
For each time period we will characterize the additional approximation error incurred by only
balancing the covariates linearly with the residual sum of squares RSSt =

∑n
i=1 e

2
it. For ease of

exposition, we assume that the control covariates are standardized and rotated, which can always
be true after pre-processing, and present results for the simpler case in which we fit SCM on the
residualized pre-treatment outcomes rather than ridge ASCM (i.e., we let λridge → ∞); the more
general version follows immediately by applying Theorem 1.

Theorem A.2. Under the linear factor model with covariates in Assumption A.3, with 1
N0
Z ′0·Z0· =

IK , for any δ > 0, γ̂cov in Equation (33) with λridge →∞ satisfies the bound∣∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂covYiT

∣∣∣∣∣∣ ≤ JM2

√
T0

( ∥∥X̌1 − X̌ ′0·γ̂
∥∥

2︸ ︷︷ ︸
imbalance in X̌

+ 4σ

√
K

N0
‖Z1 −Z ′0·γ̂‖2︸ ︷︷ ︸

excess approximation error

)
+

2JM2σ√
T0

(√
logN0 +

δ

2

)
︸ ︷︷ ︸

SCM approximation error

+ (JM2 + 1)e1max + (JM2 + 1)
√
RSSmax‖γ̂cov‖2︸ ︷︷ ︸

covariate approximation error

+ δσ(1 + ‖γ̂cov‖2)︸ ︷︷ ︸
post-treatment noise

(A.12)

with probability at least 1 − 6e−
δ2

2 − 2e−
KN0(2−

√
log 5)2

2 , where e1max = maxt |e1t| is the maximal
residual for the treated unit and RSSmax = maxtRSSt is the maximal residual sum of squares

We can also consider the special case of Theorem A.2 when ft(Zi) =
∑K

k=1BtkZik is a linear
function of the covariates, and so

Yit(0) =

J∑
j=1

φijµjt +

K∑
k=1

BtkZik + εit = φ′iµT +B′tZi + εit. (A.13)
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In this case the residuals eit = 0 ∀i, t.

Corollary A.4. Under the linear factor model with covariates in Assumption A.3 with ft(Zi) =∑K
k=1BtkZik as in Equation (A.13), for any δ > 0, γ̂cov in Equation (33) with λridge →∞ satisfies

the bound∣∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂covYiT

∣∣∣∣∣∣ ≤ JM2

√
T0

( ∥∥X̌1 − X̌ ′0·γ̂
∥∥

2︸ ︷︷ ︸
imbalance in X̌

+ 4σ

√
K

N0
‖Z1 −Z ′0·γ̂‖2︸ ︷︷ ︸

excess approximation error

)
+

2JM2σ√
T0

(√
logN0 +

δ

2

)
︸ ︷︷ ︸

SCM approximation error

+ δσ(1 + ‖γ̂cov‖2)︸ ︷︷ ︸
post-treatment noise

(A.14)

with probability at least 1− 6e−
δ2

2 − 2e−
KN0(2−

√
log 5)2

2 .

Building on Lemma 4, Theorem A.2 and Corollary A.4 show that due to the additive, separable
structure of the auxiliary covariates in Equation (A.13), controlling the pre-treatment fit in the
residualized lagged outcomes X̌ partially controls the error. This justifies directly targeting fit in
the residualized lagged outcomes X̌ rather than targeting raw lagged outcomes X. Moreover, the
excess approximation error will be small since since the number of covariates K is small relative
to N0 and the auxiliary covariates are measured without noise. As in Section 4.2, we can achieve
better balance when we apply ridge ASCM to X̌ than when we apply SCM alone. Because X̌ are
orthogonal to Z by construction, this comes at no cost in terms of imbalance in Z. However, the
fundamental challenge of over-fitting to noise still remains, and, as in the case without auxiliary
covariates, selecting the tuning parameter remains important. We again propose to follow the cross
validation approach in Section 5.3, here using the residualized lagged outcomes X̌ rather than the
raw lagged outcomes X.
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C Simulation data generating process

We now describe the simulations in detail. We use the Generalized Synthetic Control Method
(Xu, 2017) to fit the following linear factor model to the observed series of log GSP per capita
(N = 50, T0 = 89, T = 105), setting J = 3:

Yit = αi + νt +

J∑
j=1

φijµjt + εit. (A.15)

We then use these estimates as the basis for simulating data. Appendix Figure F.5 shows the
estimated factors µ̂. We use the estimated time fixed effects ν̂ and factors µ̂ and then simulate
data using Equation (A.15), drawing:

αi ∼ N( ˆ̄α, σ̂α)

φ ∼ N(0, Σ̂φ)

εit ∼ N(0, σ̂ε),

where ˆ̄α and σ̂α are the estimated mean and standard deviation of the unit-fixed effects, Σ̂φ is
the sample covariance of the estimated factor loadings, and σ̂ε is the estimated residual standard
deviation. We also simulate outcomes with quadruple the standard deviation, sd(εit) = 4σ̂ε. We
assume a sharp null of zero treatment effect in all DGPs and estimate the ATT at the final time
point.

To model selection, we compute the (marginal) propensity scores as

logit−1 {πi} = logit−1 {P(T = 1 | αi,φi)} = θ

αi +
∑
j

φij

 ,

where we set θ = 1/2 and re-scale the factors and fixed effects to have unit variance. Finally,
we restrict each simulation to have a single treated unit and therefore normalize the selection
probabilities as πi∑

j πj
.

We also consider an alternative data generating process that specializes the linear factor model
to only include unit- and time-fixed effects:

Yit(0) = αi + νt + εit.

We calibrate this data generating process by fitting the fixed effects with gsynth and drawing new
unit-fixed effects from αi ∼ N( ˆ̄α, σ̂α). We then model selection proportional to the fixed effect as
above with θ = 3

2 . Second, we generate data from an AR(3) model:

Yit(0) = β0 +
3∑
j=1

βjYi(t−j) + εit,

where we fit β0,β to the observed series of log GSP per capita. We model selection as proportional

to the last 3 outcomes logit−1πi = θ
(∑4

j=1 Yi(T0−j+1)

)
and set θ = 5

2 . For this simulation we
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estimate the ATT at time T0 + 1.
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D Proofs

D.1 Proofs for Section 4

Lemma A.2. With η̂ridge
0 and η̂ridge, the solutions to (14), the ridge estimate can be written as a

weighting estimator:

Ŷ ridge
1T (0) = η̂ridge

0 + η̂ridge′X1 =
∑
Wi=0

γ̂ridge
i YiT , (A.16)

where

γ̂ridge
i =

1

N0
+ (X1 − X̄0)′(X ′0·X0· + λridgeIT0)−1Xi. (A.17)

Moreover, the ridge weights γ̂ridge are the solution to

min
γ |

∑
i γi=1

1

2λridge
‖X1 −X ′0·γ‖22 +

1

2

∥∥∥∥γ − 1

N0

∥∥∥∥2

2

. (A.18)

Proof of Lemmas 1 and A.2. Recall that the lagged outcomes are centered by the control averages.
Notice that

Ŷ aug
1T (0) = m̂(X1) +

∑
Wi=0

γ̂scm
i (YiT − m̂(Xi))

= η̂0 + η̂′X1 +
∑
Wi=0

γ̂scm
i (YiT − η̂0 −X ′iη̂)

=
∑
Wi=0

(γ̂scm
i + (X1 −X ′0·γ̂scm)(X ′0·X0· + λIT0)−1Xi)YiT

=
∑
Wi=0

γ̂aug
i YiT

(A.19)

The expression for Ŷ ridge
1T (0) follows.

We now prove that γ̂ridge and γ̂scm solve the weighting optimization problems (A.18) and (18).
First, the Lagrangian dual to (A.18) is

min
α,β

1

2

∑
Wi=0

(
α+ β′Xi +

1

N0

)2

− (α+ β′X1) +
λ

2
‖β‖22, (A.20)

where we have used that the convex conjugate of 1
2

(
x− 1

N0

)2
is 1

2

(
y + 1

N0

)2
− 1

2N2
0

. Solving for α

we see that ∑
Wi=0

α̂+ β̂′Xi + 1 = 1

Since the lagged outcomes are centered, this implies that

α̂ = 0

Now solving for β we see that

X ′0·

(
1

1

N0
+X0·β̂

)
+ λβ̂ = X1

10



This implies that
β̂ = (X ′0·X0· + λI)−1X1

Finally, the weights are the ridge weights

γ̂i =
1

N0
+X ′1(X ′0·X0· + λI)−1Xi = γ̂ridge

i

Similarly, the Lagrangian dual to (18) is

min
α,β

1

2

∑
Wi=0

(
α+ β′Xi + γ̂scm

i

)2 − (α+ β′X1) +
λ

2
‖β‖22, (A.21)

where we have used that the convex conjugate of 1
2 (x− γ̂scm

i )2 is 1
2 (y + γ̂scm

i )2 − 1
2 γ̂

scm2
i . Solving

for α we see that α̂ = 0. Now solving for β we see that

β̂ = (X ′0·X0· + λI)−1(X1 −X ′0·γ̂scm)

Finally, the weights are the ridge ASCM weights

γ̂i = γ̂scm
i + (X1 −X ′0·γ̂scm)′(X ′0·X0· + λI)−1Xi = γ̂aug

i

Proof of Lemma 3. Notice that

X1 −X ′0·γ̂aug = (I −X ′0·X0·(X
′
0·X0· +N0λI)−1)(X1 −X ′0·γ̂scm)

= N0λ(X ′0·X0· +N0λI)−1(X1 −X ′0·γ̂scm)

= V diag

(
λ

d2
j + λ

)
V ′(X1 −X ′0·γ̂scm)

So since V is orthogonal,

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

Lemma A.3. The ridge augmented SCM weights with hyperparameter λN0, γ̂aug, satisfy

‖γ̂aug‖2 ≤ ‖γ̂
scm‖2 +

1√
N0

∥∥∥∥∥diag

(
dj

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

, (A.22)

with X̃i = V ′Xi as defined in Lemma 3.

Proof of Lemma A.3. Notice that using the singular value decomposition and by the triangle in-
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equality,
‖γ̂aug‖2 =

∥∥γ̂scm +X0·(X
′
0·X0· + λI)−1(X1 −X ′0·γ̂scm)

∥∥
2

=

∥∥∥∥∥γ̂scm +Udiag

( √
N0dj

N0d2
j + λN0

)
V ′(X1 −X ′0·γ̂scm)

∥∥∥∥∥
2

≤ ‖γ̂scm‖2 +

∥∥∥∥∥diag

(
dj

(d2
j + λ)

√
N0

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

.

D.2 Proofs for Sections 5, B.1, and B.2

For these proofs we will begin by considering a model where the post-treatment control potential
outcomes at time T are linear in the lagged outcomes and include a unit specific term ξi.

Assumption A.4. The post-treatment potential outcomes are generated as

YiT (0) = β ·Xi + ξi + εiT , (A.23)

where {εiT } are defined as in Assumption 1(a).

Below we will put structure on the unit-specific terms ξi, first we write a general finite-sample
bound.

Proposition A.1. Under model (A.23) with independent sub-Gaussian noise, for weights γ̂ inde-
pendent of the post-treatment residuals (ε1T , . . . , εNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+

∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣︸ ︷︷ ︸
approximation error

+ δσ(1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

, (A.24)

with probability at least 1− 2e−
δ2

2 .

Proof. First, note that the estimation error is

Y1T (0)−
∑
Wi=0

γ̂iYiT = β ·

X1 −
∑
Wi=0

γ̂iXi

+

ρ1 −
∑
Wi=0

γ̂iξi

+

ε1T −
∑
Wi=0

γ̂iεiT

 (A.25)

Now since the weights are independent of εiT , by the mean-zero noise assumption in Assump-
tion 1(a) we see that ε1T −

∑
Wi=0 γ̂iεiT is sub-Gaussian with scale parameter σ

√
1 + ‖γ̂‖22 ≤

σ (1 + ‖γ̂‖2). Therefore we can bound the second term:

P

∣∣∣∣∣∣ε1T −
∑
Wi=0

γ̂iεiT

∣∣∣∣∣∣ ≥ δσ (1 + ‖γ̂‖2)

 ≤ 2 exp

(
−δ

2

2

)
The result follows from the triangle inequality and the Cauchy-Schwartz inequality.
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Proof of Proposition 1. Note that under the linear model (4), ξi = 0 for all i. Now from Lemma 3
we have that

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

.

Plugging this in to Equation (A.24) completes the proof.

Proof of Corollary A.1. This is a direct consequence of Proposition A.1 noting that under the linear
model (4), ξi = 0 for all i.

Random approximation error We now consider the case where ξi are random. We can use
Proposition A.1 to further bound the approximation error. In particular, we make the following
assumption:

Assumption A.5. ξi are sub-Gaussian random variables with scale parameter $ and are mean-
zero, E[ξi] = 0 for all i = 1, . . . , N .

Lemma A.4. Under Assumption A.5, for weights γ̂ and any δ > 0 the approximation error satisfies∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤ δ$ + 2‖γ̂‖1$
(√

log 2N0 +
δ

2

)
, (A.26)

with probability at least 1− 4e−
δ2

2 .

Proof of Lemma A.4. From the triangle inequality and Hölder’s inequality we see that∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤ |ξ1|+ ‖γ̂‖1 max
Wi=0

|ξi|.

Now since the ξi are mean-zero sub-Gaussian with scale parameter $, we have that

P (|ξ1| ≥ δ$) ≤ 2e−
δ2

2

Next, from the union bound, the maximum of the N0 sub-Gaussian variables ρ2, . . . , ρN satisfies

P

(
max
Wi=0

|ξi| ≥ 2$
√

log 2N0 + δ

)
≤ 2e−

δ2

2$2 .

Setting δ = δ$ and combining the two probabilities with the union bound gives the result.

Lemma A.5. Under Assumption A.5, for the ridge ASCM weights γ̂aug with hyper-parameter
λridge = λN0 and for any δ > 0 the approximation error satisfies∣∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤ 2$

(√
log 2N0 +

δ

2

)
+ (1 + δ)4$

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

, (A.27)
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with probability at least 1− 4e−
δ2

2 − e−2(log 2+N0 log 5)δ2 .

Proof of Lemma A.5. Again from Hölder’s inequality we see that∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣∣ = |ξ1|+

∣∣∣∣∣∣
∑
Wi=0

(γ̂scm
i + γ̂aug

i − γ̂scm
i )ξi

∣∣∣∣∣∣
≤ |ξ1|+ ‖γ̂scm‖1 max

Wi=0
|ξi|+ ‖γ̂aug − γ̂scm‖2

√∑
Wi=0

ξ2
i .

We have bounded the first two terms in Lemma A.4, now it sufficies to bound the third term.
First, from Lemma A.3 we see that

‖γ̂aug − γ̂scm‖2 =
1√
N0

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

.

Second, via a standard discretization argument (Wainwright, 2018), we can bound the L2 norm of
the vector (ξ2, . . . , ξN ) as

P

√∑
Wi=0

ξ2
i ≥ 2$

√
log 2 +N0 log 5 + δ

 ≤ 2 exp

(
− δ2

2$2

)
.

Setting δ = 2δ$
√

log 2 +N0 log 5, noting that log 2 +N0 log 5 < 4N0, we have that

‖γ̂aug − γ̂scm‖2
√∑
Wi=0

ξ2
i ≤ (1 + δ)$4

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

with probability at least 1 − 2e−2(log 2+N0 log 5)δ2 . Since ‖γ̂scm‖1 = 1, combining with Lemma A.4
via the union bound gives the result.

Theorem A.3. Under Assumptions A.4 and A.5 model (A.23), for γ̂ independent of the post-
treatment outcomes (Y1T , . . . , YNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ δ$ + 2‖γ̂‖1$
(√

log 2N0 +
δ

2

)
︸ ︷︷ ︸

approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.28)

with probability at least 1− 6e−
δ2

2 .

Proof of Theorem A.3. The Theorem directly follows from Proposition A.1 and Lemma A.4, com-
bining the two probabilistic bounds via the union bound.
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Theorem A.4. Under Assumptions A.4 and A.5 model (A.23), for any δ > 0, the ridge ASCM
weights with hyperparameter λridge = λN0 satisfy the bound

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥∥diag

(
λ

d2
j + λ

)X̃1 −
∑
Wi=0

γ̂scm
i X̃i

∥∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ 2$

(√
log 2N0 +

δ

2

)
︸ ︷︷ ︸

approximation error

(1 + δ)4$

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.29)

with probability at least 1− 6e−
δ2

2 − e−2(log 2+N0 log 5)δ2 .

Proof of Theorem A.4. First note that from Lemma 3 we have that

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

.

The Theorem directly follows from Proposition A.1 and Lemma A.5, combining the two probabilistic
bounds via the union bound.

Theorems A.3 and A.4 have several implications when the outcomes follow a linear factor model
(6). To see this, we need one more lemma:

Lemma A.6. The linear factor model is a special case of model (A.23) with β = 1
T0
µµT and

ξi = 1
T0
µ′Tµεi(1:T0). ‖β‖2 ≤ MJ2

√
T0

, and if εi(1:T0) are independent sub-Gaussian vectors with scale

parameter σT0 , then 1
T0
µ′Tµ

′εi(1:T0) is sub-Gaussian with scale parameter
JM2σT0√

T0
.

Proof of Lemma A.6. Notice that under the linear factor model, the pre-treatment covariates for
unit i satisfy:

Xi = µφi + εi(1:T0).

Multiplying both sides by (µ′µ)−1µ′ = 1
T0
µ′ and rearranging gives

1

T0
µ′Xi −

1

T0
µ′εi(1:T0) = φi.

Then we see that the post treatment outcomes are

YiT (0) =
1

T0
µ′Tµ

′Xi +
1

T0
µ′Tµ

′εi(1:T0).

Since εi(1:T0) is a sub-Gaussian vector v′εi(1:T0) is sub-Gaussian with scale parameter σT0 for any

v ∈ RT0 such that ‖v‖2 = 1. Now notice that ‖µ′Tµ′‖2 ≤ ‖µT ‖2‖µ‖2 ≤ MJ2
√
T0. This completes

the proof.

Proof of Corollary A.2. From Lemma A.6 we can apply Theorem A.3 with β = 1
T0
µ′Tµ

′ and ξi =
1
T0
µ′Tµ

′εi(1:T0). Since εit are independent sub-Gaussian random variables, εi(1:T0) is a sub-Gaussian
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vector with scale parameter σT0 = σ. Noting that ‖γ̂‖1 =
∑

Wi=0 |γ̂i| = 1 and applying Lemma
A.6 gives the result.

Proof of Theorem 1. Again from Lemma A.6 we can apply Theorem A.4 with β = 1
T0
µ′Tµ

′ and

ξi = 1
T0
µ′Tµ

′εi(1:T0), so $ = JM2σ√
T0

. Plugging these values into Theorem A.3 gives the result.

Corollary A.5 (Approximation error for ridge ASCM with dependent errors). Under the linear

factor model (6) with time-dependent errors satisfying εi(1:T0)
iid∼ N(0, σ2Ω) the approximation error

satisfies∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

T0
µ′Tµ

′

ε1(1:T0) −
∑
Wi=0

γ̂iεi(1:T0)

∣∣∣∣∣∣
≤ 2

√
‖Ω‖2
T0

JM2σ

(√
log 2N0 + δ + (1 + δ)2

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

)
,

(A.30)

Proof of Corollary A.5. From Lemma A.6, we see that ξi = 1
T0
µ′Tµ

′εi(1:T0) is sub-Guassian with

scale parameter JM2
√
‖Ω‖2
T0

. Plugging in to Lemma A.5 gives the result.

Lipshitz approximation error If ξi are Lipshitz functions, we can can also bound the approx-
imation error.

Assumption A.6. ξi = f(Xi) where f : RT0 → R is an L-Lipshitz function.

Lemma A.7. Under Assumption A.6, for weights on the simplex γ̂ ∈ ∆N0 , the approximation
error satisfies ∣∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂i‖X1 −Xi‖2 (A.31)

Proof of Lemma A.7. Since the weights sum to one, we have that∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
Wi=0

γ̂i(f(X1)− f(Xi))

∣∣∣∣∣∣ .
Now from the Lipshitz property, |f(X1)− f(Xi)| ≤ L‖X1 −Xi‖2, and so by Jensen’s inequalty:∣∣∣∣∣∣

∑
Wi=0

γ̂i(f(X1)− f(Xi))

∣∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂i‖X1 −Xi‖2

Proof of Theorem A.3. The proof follows directly from Proposition A.1 and Lemma A.7.
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Lemma A.8. Let C = maxWi=0 ‖Xi‖2. Under Assumption A.6, the ridge ASCM weights γ̂aug

(17) with hyperparameter λridge = N0λ satisfy∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂scm
i ‖X1 −Xi‖2 + CL

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

(A.32)

Proof of Lemma A.8. From the triangle inequality we have that∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
Wi=0

γ̂scm
i (f(X1)− f(Xi))

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
Wi=0

Xi

(
X ′0·X0· + λI

)−1
(X1 −X ′0·γ̂scm)f(Xi)

∣∣∣∣∣∣ .
We have already bounded the first term in Lemma A.7, now we bound the second term. From the
Cauchy-Schwartz inequality and since ‖x‖2 ≤

√
N0‖x‖∞ for all x ∈ RN0 we see that∣∣∣∣∣∣

∑
Wi=0

Xi

(
X ′0·X0· + λI

)−1
(X1 −X ′0·γ̂scm)f(Xi)

∣∣∣∣∣∣ ≤
√
N0

∥∥∥X0·
(
X ′0·X0· + λI

)−1
(X1 −X ′0·γ̂scm)

∥∥∥
2
|f(Xi)|

=

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

|f(Xi)|

≤ CL

∥∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥∥
2

,

where the second line comes from Lemma A.3 and the third line from the Lipshitz property.

Proof of Theorem A.1. The proof follows directly from Proposition A.1 and Lemma A.8.

D.3 Proofs for Sections 6 and B.3

Proof of Lemma 4. The regression parameters η̂x and η̂z in Equation (31) are:

η̂x = (X̌ ′0·X̌0· + λridgeI)−1X̌ ′0·Y0T and η̂z = (Z ′0·Z0·)
−1Z ′0·Y0T (A.33)

Now notice that

Ŷ cov
0T = η̂′xX1 + η̂′zZ1 +

∑
Wi=0

(YiT − η̂′xXi − η̂zZi)γ̂i

= η̂′x(X1 −X ′0·γ̂) + η̂z(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= η̂′x(X1 −X ′0·γ̂)− η̂′xX0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0TZ0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= η̂′x(X̌1 − X̌ ′0·γ̂) + Y ′0TZ0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= Y ′0T

(
γ̂ + X̌0·(X̌

′
0·X̌0· + λridgeIT0)−1(X̌1 − X̌ ′0·γ̂) +Z0·(Z

′
0·Z0·)

−1(Z1 −Z ′0·γ̂)
)
.

(A.34)
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This gives the form of γ̂cov. The imbalance in Z is

Z1 −Z ′0·γ̂cov =
(
Z1 −Z ′0·Z0·(Z

′
0·Z0·)

−1Z1

)
+
(
Z0· −Z ′0·Z0·(Z

′
0·Z0·)

−1Z0·
)′
γ̂

−Z ′0·X̌0·(X̌
′
0·X̌0· + λridgeI)−1(X̌1 − X̌ ′0·γ̂)

= 0.

(A.35)

The pre-treatment fit is

X1 −X ′0·γ̂cov =
(
X1 −X ′0·Z0·(Z

′
0·Z0·)

−1Z1

)
+
(
X0· −X ′0·Z0·(Z

′
0·Z0·)

−1Z0·
)′
γ̂

−X ′0·X̌0·(X̌
′
0·X̌0· + λridgeIT0)−1(X̌1 − X̌ ′0·γ̂)

=
(
IT0 −X ′0·X̌0·(X̌

′
0·X̌0· + λridgeIT0)−1

) (
X̌1 − X̌ ′0·γ̂

)
=
(
IT0 − X̌ ′0·X̌0·(X̌

′
0·X̌0· + λridgeIT0)−1

) (
X̌1 − X̌ ′0·γ̂

)
.

(A.36)

This gives the bound on the pre-treatment fit.

Proof of Theorem A.2. First, we will separate f(Z) into the projection onto Z and a residual.
Defining Bt = (Z ′Z)−1Z ′ft(Z) ∈ RK as the regression coefficient, the projection of ft(Zi) is Z ′iBt

and the residual is eit = ft(Zi) − Z ′iBt. We will denote the matrix of regression coefficients over
t = 1, . . . , T0 as B = [B1, . . . ,BT0 ] ∈ RK×T0 and denote the matrix of residuals as E ∈ Rn×T0 ,
with E1· = (e11, . . . , e1T0) as the vector of residuals for the treated unit and E0· as the matrix of
residuals for the control units.

Then the error is∣∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂cov
i YiT

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣µT ·

φ1 −
∑
Wi=0

γ̂cov
i φi

∣∣∣∣∣∣+

∣∣∣∣∣∣Bt ·

Z1 −
∑
Wi=0

γ̂cov
i Zi

∣∣∣∣∣∣
+

∣∣∣∣∣∣e1T −
∑
Wi=0

γ̂coveiT

∣∣∣∣∣∣+

∣∣∣∣∣∣ε1T −
∑
Wi=0

γ̂cov
i εiT

∣∣∣∣∣∣
Since γ̂cov

i exactly balances the covariates, the second term is equal to zero. We can bound the
third term with Hölder’s inequality:∣∣∣∣∣∣e1T −

∑
Wi=0

γ̂coveiT

∣∣∣∣∣∣ ≤ |e1T |+
√
RSST ‖γ̂cov‖2

In previous theorems we have bounded the last term with high probability. Only the error due to
imbalance remains.

Denote ε0(1:T0) as the matrix of pre-treatment noise for the control units, where the rows
correspond to ε2(1:T0), . . . , εN0(1:T0). Building on Lemma A.6, we can see that the error due to
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imbalance in φ is equal to

µT ·

φ1 −
∑
Wi=0

γ̂cov
i φi

 =
1

T0
µ′Tµ

′(X1 −X ′0·γ̂cov)− 1

T0
µ′Tµ

′(ε1(1:T0) − ε′0(1:T0)γ̂
cov)

− 1

T0
µ′Tµ

′B′(Z1 −Z ′0·γ̂cov)− 1

T0
µ′Tµ

′(E1· −E′0·γ̂cov).

(A.37)

By construction, γ̂cov perfectly balances the covariates, and combined with Lemma 4, the error due
to imbalance in φ simplifies to

µT ·

φ1 −
∑
Wi=0

γiφi

 =
1

T0
µ′Tµ

′(X̌1−X̌ ′0·γ̂)− 1

T0
µ′Tµ

′(ε1(1:T0)−ε′0(1:T0)γ̂
cov)− 1

T0
µ′Tµ

′(E1·−E′0·γ̂cov).

We now turn to bounding the noise term and the error due to the projection of f(Z) on to Z.
First, notice that

1

T0
µ′Tµ

′ε′0(1:T0)γ̂
cov =

1

T0
µ′Tµ

′ε′0(1:T0)γ̂
scm +

1

T0
µ′Tµ

′ε′0(1:T0)Z0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂scm).

We have bounded the first term on the right hand side in Lemma A.4. To bound the second term,
notice that

∑
Wi=0

∑T0
t=1µ

′
Tµt·Zikεit is sub-Gaussian with scale parameter σMJ2

√
T0‖Z·k‖2 =

MJ2σ
√
T0N0. We can now bound the L2 norm of 1

T0
µ′Tµ

′ε′0(1:T0)Z0· ∈ RK :

P

(
1

T0
‖µ′Tµ′ε′0(1:T0)Z0·‖2 ≥ 2JM2σ

(√
N0K log 5

T0
+ δ

))
≤ 2 exp

(
−T0δ

2

2

)
Replacing δ with

√
KN0
T0

(2−
√

log 5) and with the Cauchy-Schwarz inequality we see that

1

T0

∣∣∣µ′Tµ′ε′0(1:T0)Z0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂)
∣∣∣ ≤ 4JM2σ

√
K

T0N0
‖Z1 −Z ′0·γ̂scm‖2

with probability at least 1− 2 exp
(
−KN0(2−

√
log 5)2

2

)
.

Next we turn to the residual term. By Hölder’s inequality and using that for a matrix A, the
operator norm is bounded by ‖A‖2 ≤

√
trace(A′A) we see that∣∣∣∣ 1

T0
µ′Tµ

′(E1· −E′0·γ̂cov)

∣∣∣∣ ≤ JM2

√
T0

(‖E1·‖2 + ‖γ̂cov‖2‖E0·‖2)

≤ JM2

 max
t=1,...,T0

|e1t|+ ‖γ̂cov‖2

√√√√ 1

T0

T0∑
t=1

RSSt


≤ JM2

(
max

t=1,...,T0
|e1t|+ ‖γ̂cov‖2

√
max
t
RSSt

)
,

where we have used that 1√
T0
‖E1·‖2 ≤ maxt=1,...,T0 |e1t| and trace(E′0·E0·) =

∑T0
t=1RSSt.
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Combining with Lemma 4 and putting together the pieces with the union bound gives the
result.
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E Connection to balancing weights and IPW

We have motivated Augmented SCM via bias correction. An alternative motivation comes from the
connection between SCM and inverse propensity score weighting (IPW). This is also comparable
in form to the generalized regression estimator in survey sampling (Cassel et al., 1976; Breidt and
Opsomer, 2017), which has been adapted to the causal inference setting by, among others, Athey
et al. (2018) and Hirshberg and Wager (2018).

First, notice that the SCM weights from the constrained optimization problem in Equation (8)
are a form of approximate balancing weights; see, for example, Zubizarreta (2015); Athey et al.
(2018); Tan (2017); Wang and Zubizarreta (2018); Zhao (2018). Unlike traditional inverse propen-
sity score weights, which indirectly minimize covariate imbalance by estimating a propensity score
model, balancing weights seek to directly minimize covariate imbalance, in this case L2 imbalance.
Balancing weights have a Lagrangian dual formulation as inverse propensity score weights (see, for
example Zhao and Percival, 2017; Zhao, 2018; Chattopadhyay et al., 2020). Extending these results
to the SCM setting, the Lagrangian dual of the SCM optimization problem in Equation (8) has the
form of a propensity score model. Importantly, as we discuss below, it is not always appropriate to
interpret this model as a propensity score.

We first derive the Lagrangian dual for a general class of balancing weights problems, then
specialize to the penalized SCM estimator (8).

min
γ

hζ(X1 −X ′0·γ)︸ ︷︷ ︸
balance criterion

+
∑
Wi=0

f(γi)︸ ︷︷ ︸
dispersion

subject to
∑
Wi=0

γi = 1.
(A.38)

This formulation generalizes Equation (8) in two ways: first, we remove the non-negativity con-
straint and note that this can be included by restricting the domain of the strongly convex dispersion
penalty f . Examples include the re-centered L2 dispersion penalties for ridge regression and ridge
ASCM, an entropy penalty (Robbins et al., 2017), and an elastic net penalty (Doudchenko and
Imbens, 2017). Second, we generalize from the squared L2 norm to a general balance criterion hζ ;
another promiment example is an L∞ constraint (see e.g. Zubizarreta, 2015; Athey et al., 2018).

Proposition A.2. The Lagrangian dual to Equation (A.38) is

min
α,β

∑
Wi=0

f∗(α+ β′Xi·)− (α+ β′X1)︸ ︷︷ ︸
loss function

+ h∗ζ(β)︸ ︷︷ ︸
regularization

, (A.39)

where a convex, differentiable function g has convex conjugate g∗(y) ≡ supx∈dom(g){y′x − g(x)}.
The solutions to the primal problem (A.38) are γ̂i = f∗′(α̂+β̂′Xi), where f∗′(·) is the first derivative
of the convex conjugate, f∗(·).

There is a large literature relating balancing weights to propensity score weights. This literature
shows that the loss function in Equation (A.39) is an M-estimator for the propensity score and thus
will be consistent for the propensity score parameters under large N asymptotics. The dispersion
measure f(·) determines the link function of the propensity score model, where the odds of treatment
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are π(x)
1−π(x) = f∗′(α + β′x). Note that un-penalized SCM, which can yield multiple solutions,

does not have a well-defined link function. We extend the duality to a general set of balance
criteria so that Equation (A.39) is a regularized M-estimator of the propensity score parameters
where the balance criterion hζ(·) determines the type of regularization through its conjugate h∗ζ(·).
This formulation recovers the duality between entropy balancing and a logistic link (Zhao and
Percival, 2017), Oaxaca-Blinder weights and a log-logistic link (Kline, 2011), and L∞ balance and
L1 regularization (Wang and Zubizarreta, 2018). This more general formulation also suggests
natural extensions of both SCM and ASCM beyond the L2 setting to other forms, especially L1

regularization.
Specializing proposition A.2 to a squared L2 balance criterion hζ(x) = 1

2ζ ‖x‖
2
2 as in the penalized

SCM problems yields that the dual propensity score coefficients β are regularized by a ridge penalty.
In the case of an entropy dispersion penalty as Robbins et al. (2017) consider, the donor weights γ̂
have the form of IPW weights with a logistic link function, where the propensity score is π(Xi) =

logit−1(α+ β′Xi), the odds of treatment are π(Xi)
1−π(Xi)

= exp(α+ β′Xi) = γi.
We emphasize that while Proposition A.2 shows that the the estimated weights have the IPW

form, in SCM settings it may not always be appropriate to interpret the dual problem as a propen-
sity score reflecting stochastic selection into treatment. For example, this interpretation would not
be appropriate in some canonical SCM examples, such as the analysis of German reunification in
Abadie et al. (2015).

Proof of Proposition A.2. We can augment the optimization problem (A.38) with auxiliary vari-
ables ε, yielding:

min
γ,ε

hζ(ε) +
∑
Wi=0

f(γi).

subject to ε = X1 −X ′0·γ∑
Wi=0

γi = 1

(A.40)

The Lagrangian is

L(γ, ε, α,β) =
∑

i|Wi=0

f(γi) + α(1− γi) + hζ(ε) + β′(X1 −X ′0·γ − ε). (A.41)

The dual maximizes the objective

q(α,β) = min
γ,ε
L(γ, ε, α,β)

=
∑
Wi=0

min
γi
{f(γi)− (α+ β′Xi)γi}+ min

ε
{hζ(ε)− β′ε}+ α+ β′X1

= −
∑
Wi=0

f∗(α+ β′Xi) + α+ β′X ′1 − h∗ζ(β),

(A.42)

By strong duality the general dual problem (A.39), which minimizes −q(α,β), is equivalent to the
primal balancing weights problem. Given the α̂ and β̂ that minimize the Lagrangian dual objective,
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−q(α,β), we recover the donor weights solution to (A.38) as

γ̂i = f∗′(α̂+ β̂′Xi). (A.43)
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F Additional figures

Figure F.1: RMSE for different augmented and non-augmented estimators across outcome models.
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Figure F.2: Absolute bias (as a percentage of SCM bias) for ridge, fixed effects, and several ma-
chine learning and panel data outcome models, and their augmented versions using the same data
generating processes as Figure 3.
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Figure F.3: Bias for different augmented and non-augmented estimators across outcome models
conditioned on SCM fit in the top quintile.
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Figure F.4: RMSE for different augmented and non-augmented estimators across outcome models
conditioned on SCM fit in the top quntile.

27



Figure F.5: Latent factors for calibrated simulation studies.

Figure F.6: Cross validation MSE and one standard error computed according to Equation (27).
The minimal point, and the maximum λ within one standard error of the minimum are highlighted.
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Figure F.7: Point estimates along with point-wise 95% conformal confidence intervals for the effect
of the tax cuts on GSP per capita using SCM, ridge ASCM, and ridge ASCM with covariates.

Figure F.8: Point estimates along with point-wise 95% conformal confidence intervals for the effect
of the tax cuts on log GSP per capita using de-meaned SCM, ridge regression alone, ridge ASCM
with λ chosen to minimize the cross validated MSE, the original SCM proposal with covariates
(Abadie et al., 2010), and a two-way fixed effects differences in differences estimate.
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Figure F.9: Ridge regression coefficients for each pre-treatment quarter, averaged across post-
treatment quarters.

Figure F.10: Placebo point estimates along with 95% conformal confidence intervals for SCM with
placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005 to highlight placebo
estimates.
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Figure F.11: Placebo point estimates along with 95% conformal confidence intervals for ridge ASCM
with placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005 to highlight placebo
estimates.

Figure F.12: Placebo point estimates along with 95% conformal confidence intervals for Ridge
ASCM with covariates with placebo treatment times in Q2 2009, 2010, and 2011. The time period
begins in 2005 and ends in Q1 2012 to highlight placebo estimates.
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Figure F.13: Donor unit weights for SCM, ridge regression, and ridge ASCM balancing lagged
outcomes.

Figure F.14: Donor unit weights for SCM and ridge ASCM fit on lagged outcomes after residualizing
out auxiliary covariates.
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