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Abstract
Staggered	 adoption	 of	 policies	 by	 different	 units	 at	
different	 times	 creates	 promising	 opportunities	 for	
observational	 causal	 inference.	 Estimation	 remains	
challenging,	 however,	 and	 common	 regression	 meth-
ods	can	give	misleading	results.	A	promising	alternative	
is	 the	 synthetic	 control	 method	 (SCM),	 which	 finds	 a	
weighted	average	of	control	units	that	closely	balances	
the	treated	unit’s	pre-	treatment	outcomes.	In	this	paper,	
we	generalize	SCM,	originally	designed	to	study	a	sin-
gle	 treated	unit,	 to	 the	 staggered	adoption	setting.	We	
first	 bound	 the	 error	 for	 the	 average	 effect	 and	 show	
that	it	depends	on	both	the	imbalance	for	each	treated	
unit	separately	and	the	imbalance	for	the	average	of	the	
treated	units.	We	 then	propose	 ‘partially	pooled’	SCM	
weights	 to	 minimize	 a	 weighted	 combination	 of	 these	
measures;	approaches	that	focus	only	on	balancing	one	
of	the	two	components	can	lead	to	bias.	We	extend	this	
approach	 to	 incorporate	unit-	level	 intercept	shifts	and	
auxiliary	covariates.	We	assess	 the	performance	of	 the	
proposed	 method	 via	 extensive	 simulations	 and	 apply	
our	 results	 to	 the	 question	 of	 whether	 teacher	 collec-
tive	bargaining	leads	to	higher	school	spending,	finding	
minimal	impacts.	We	implement	the	proposed	method	
in	the	augsynth	R	package.
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1 |  INTRODUCTION

Jurisdictions	often	adopt	policies	at	different	times,	creating	promising	opportunities	for	ob-
servational	 causal	 inference.	 In	 our	 motivating	 application,	 33	 states	 passed	 laws	 between	
1964	and	1987	mandating	that	school	districts	bargain	with	teachers’	unions	(Hoxby,	1996;	
Paglayan,	2019);	our	goal	is	to	estimate	the	impact	of	these	laws	on	teacher	salaries	and	school	
expenditures.

However,	estimating	causal	effects	under	staggered	adoption	remains	challenging.	Workhorse	
methods,	such	as	the	regression-	based	two-	way	fixed	effects	model,	rely	on	strong	modelling	as-
sumptions	and	can	give	misleading	estimates	when	treatment	timing	varies	(Borusyak	et al.,	2021;	
Goodman-	Bacon,	 2021;	 Sun	 &	 Abraham,	 2020).	 A	 promising	 alternative	 is	 the	 synthetic control 
method	(SCM;	Abadie	et al.,	2010,	2015).	SCM	estimates	the	counterfactual	untreated	outcome	via	a	
weighted	average	of	untreated	units,	with	weights	chosen	to	match	the	treated	unit’s	pre-	treatment	
outcomes	as	closely	as	possible.	SCM,	however,	was	developed	for	settings	where	only	a	single	unit	
is	treated,	and	proposals	for	extending	SCM	to	the	staggered	adoption	case	have	been	ad	hoc.	One	
common	strategy	is	to	estimate	SCM	weights	separately	for	each	treated	unit	and	then	average	the	
estimates	(see,	e.g.,	Donohue	et al.,	2019;	Dube	&	Zipperer,	2015).	However,	this	relies	on	being	able	
to	find	good	synthetic	controls	for	every	treated	unit,	which	is	not	possible	in	our	application.

In	this	paper,	we	develop	SCM	for	the	staggered	adoption	setting.	Under	two	common	data	
generating	processes	for	panel	data,	an	autoregressive	model	and	a	linear	factor	model,	we	bound	
the	error	of	a	weighting	estimator	for	the	average	effect	and	show	that	it	depends	on	both	the	
unit-	specific	 imbalance	for	each	treated	unit	and	the	 imbalance	for	 the	average	of	 the	treated	
units.	This	leads	to	our	main	proposal,	partially pooled SCM,	which	minimizes	a	weighted	aver-
age	of	the	two	imbalances.	This	approach	nests	two	special	cases:	separate SCM,	which	reflects	
the	current	practice	of	estimating	weights	that	separately	minimize	the	pre-	treatment	imbalance	
for	each	treated	unit;	and	pooled SCM,	which	instead	minimizes	the	average	pre-	treatment	im-
balance	across	all	 treated	units.	Both	special	cases	have	drawbacks.	Separate	SCM	can	lead	to	
poor	fit	for	the	average,	leading	to	possible	bias	when	the	average	treatment	effect	is	the	estimand	
of	interest.	Pooled	SCM,	by	contrast,	can	achieve	nearly	perfect	fit	for	the	average	treated	unit	
but	can	yield	substantially	worse	unit-	specific	fits.	This	can	lead	to	poor	estimates	of	unit-	level	
treatment	effects	and	to	bias	for	the	average	effect	if	the	data	generating	process	varies	over	time.	
Partially	pooled	SCM	moves	smoothly	between	these	two	extremes,	with	a	hyperparameter	de-
noting	the	relative	weight	of	the	two	balance	measures	in	the	optimization	problem.	We	discuss	
how	to	select	weights	to	trade-	off	between	these	two	quantities	in	practice.

We	then	explore	several	extensions.	First,	we	incorporate	an	intercept	shift	into	the	SCM	prob-
lem,	following	proposals	by	Doudchenko	and	Imbens	(2017)	and	Ferman	and	Pinto	(2021).	The	
resulting	treatment	effect	estimator	has	the	form	of	a	weighted	difference-	in-	differences	estima-
tor,	connecting	our	proposed	approach	to	a	large	econometric	literature	(Callaway	&	Sant’Anna,	
2020;	Sun	&	Abraham,	2020).	We	recommend	this	approach	as	a	reasonable	default	in	practice;	it	
amounts	to	applying	our	partially	pooled	SCM	estimator	to	de-	meaned	outcome	series.	Second,	
we	modify	the	SCM	problem	to	incorporate	auxiliary	covariates	alongside	lagged	outcomes.	We	
also	briefly	address	inference	for	SCM-	like	estimates	in	the	staggered	adoption	setting.	We	im-
plement	the	proposed	methodology	in	the	augsynth	package	for	R,	available	at	https://github.
com/ebenm	ichae	l/augsynth.

We	apply	our	methods	to	estimating	the	impact	of	mandatory	teacher	collective	bargaining	
and	show	that	they	achieve	better	pre-	treatment	balance	than	existing	approaches.	We	find	no	
impact	of	teacher	collective	bargaining	laws	on	either	teacher	salaries	or	student	expenditures,	
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consistent	 with	 several	 recent	 papers	 (Frandsen,	 2016;	 Paglayan,	 2019)	 but	 counter	 to	 earlier	
claims	(most	notably	Hoxby,	1996).

1.1 | Related work

Our	paper	contributes	to	several	methodological	literatures.	First,	there	is	a	large	and	active	ap-
plied	econometrics	literature	on	challenges	and	remedies	for	two-	way	fixed	effects	models	with	
multiple	treated	units;	see	Borusyak	et al.	(2021);	Sun	and	Abraham	(2020);	Athey	and	Imbens	
(2021);	Goodman-	Bacon	(2021);	Callaway	and	Sant’Anna	(2020);	Roth	and	Sant’Anna	(2021).	
See	also	Xu	(2017)	and	Athey	et al.	(2021)	for	recent	generalizations	of	these	models.

SCM	has	also	attracted	a	great	deal	of	attention;	see	Abadie	(2019)	for	a	review.	Several	recent	
papers	have	explored	SCM	with	multiple	treated	units.	In	the	case	where	all	units	adopt	treat-
ment	at	the	same	time,	some	propose	to	first	average	the	units	and	then	estimate	SCM	weights	
for	the	average,	analogous	to	our	fully	pooled	SCM	estimate;	for	discussion,	see	Kreif	et al.	(2016);	
Robbins	et al.	(2017).	An	alternative	is	Abadie	and	L’Hour	(2021),	who	instead	propose	to	esti-
mate	separate	SCM	weights	for	each	treated	unit.	In	particular,	they	propose	a	penalized	SCM	
approach	that	aims	to	reduce	interpolation	bias,	allowing	for	weights	that	move	continuously	
between	standard	SCM	and	nearest-	neighbour	matching.	Our	approach	complements	these	pa-
pers	by	adapting	some	of	these	ideas	to	the	staggered	adoption	setting.	For	some	other	examples	
of	SCM	under	staggered	adoption,	see	also	Dube	and	Zipperer	(2015);	Shaikh	and	Toulis	(2021);	
Donohue	et al.	(2019);	Cao	and	Lu	(2019).

1.2 | Motivating example: Teacher collective bargaining

The	United	States,	 like	other	developed	countries,	 spends	 substantial	 resources	on	public	ed-
ucation.	Approximately	80%	of	education	spending	goes	 to	 teacher	salaries	and	benefits	 (U.S.	
Department	of	Education,	National	Center	for	Education	Statistics,	2018),	and	research	points	
to	teacher	quality	as	a	key	determinant	of	student	outcomes	(Jackson	et al.,	2014).	Over	recent	
decades,	the	teacher	employment	relationship	has	changed	dramatically	via	the	introduction	of	
unions	and	collective	bargaining	agreements	(Goldstein,	2015).	Critics	identify	these	as	a	‘harm-
ful	anachronism’	and	‘the	most	daunting	impediments’	to	education	reform	(Hess	&	West,	2006),	
while	proponents	argue	that	collective	bargaining	raises	pay	and	thereby	helps	to	attract	and	re-
tain	high-	quality	teachers.	A	major	2018	Supreme	Court	decision,	Janus v AFSCME,	is	expected	
to	weaken	teachers’	unions,	bringing	renewed	attention	to	this	area	and	raising	interest	in	under-
standing	the	effects	of	teacher	collective	bargaining.

Since	1964,	a	number	of	states	have	passed	laws	mandating	that	school	districts	bargain	with	
teachers’	unions.1	Given	the	strong	criticism	directed	at	teachers’	unions,	there	is	surprisingly	little	
evidence	that	they,	or	the	mandatory	bargaining	laws,	have	any	effect	at	all.	In	a	seminal	study,	
Hoxby	(1996)	uses	state-	level	changes	in	collective	bargaining	laws	to	argue	that	teacher	collective	
bargaining	raises	teacher	salaries	and	school	expenditures	but	reduces	student	outcomes.	However,	
several	more	recent	papers	have	disputed	Hoxby’s	conclusions.	Using	a	panel	of	school	districts,	
Lovenheim	(2009)	finds	little	effect	of	unionization	on	teacher	pay	or	class	size.	Frandsen	(2016)	

	1Another	10	states	allow	but	do	not	require	collective	bargaining,	while	seven	prohibit	it.	We	focus	on	estimating	the	
effects	of	mandates.
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similarly	finds	little	effect	of	state	unionization	laws	on	teacher	pay.	Finally,	Paglayan	(2019)	ex-
tends	the	historical	state-	level	data	set	from	Hoxby	(1996).	Using	a	variant	of	the	two-	way	fixed	
effect	model,	she	finds	precisely	estimated	zero	effects	of	mandatory	bargaining	laws	on	per-	pupil	
school	expenditures2	and	teacher	salaries.	Motivated	in	part	by	recent	criticisms	of	such	models	
(Goodman-	Bacon,	2021),	we	revisit	the	Paglayan	(2019)	analysis	using	different	methods.

Figure	1	shows	adoption	times	of	state	mandatory	bargaining	laws	between	1964	and	1990.	
Adoptions	were	spread	across	14	separate	years,	although	16	states	adopted	laws	between	1965	
and	1970.	Following	Paglayan	(2019),	our	main	outcomes	of	interest	are	per-	pupil	student	expen-
ditures	and	teacher	salaries,	both	measured	in	2010	dollars	and	log	transformed.	We	observe	these	
outcomes	back	to	1959	for	49	states;	we	exclude	Wisconsin,	which	adopted	a	mandatory	bargain-
ing	law	in	1960	and	thus	has	only	one	year	of	pre-	intervention	data,	as	well	as	Washington,	DC.	
This	gives	between	6	and	28	years	of	data	before	the	adoption	of	mandatory	bargaining,	with	an	
average	of	13	years.

1.3 | Paper roadmap

Section	2	lays	out	the	technical	background	and	introduces	the	synthetic	control	estimator	for	a	
single	treated	unit.	Section	3	bounds	the	estimation	error	for	general	weighting	estimators	under	
two	families	of	data	generating	process,	an	autoregressive	model	and	a	linear	factor	model,	with	
staggered	adoption.	Section	4	introduces	partially	pooled	SCM	as	a	solution	to	the	problem	of	
minimizing	estimation	error	and	considers	 two	special	cases,	separate	SCM	and	pooled	SCM.	
Section	5	proposes	several	important	extensions,	including	incorporating	an	intercept	shift	and	

	2Paglayan	(2019)	defines	this	as	‘the	total	current	operational	expenditures	(regardless	of	funding	source)	that	are	
devoted	to	public	schools	in	a	state	divided	by	the	number	of	public	school	students	in	that	state’.

F I G U R E  1 	 Staggered	adoption	of	mandatory	collective	bargaining	laws	from	1964	to	1990	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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auxiliary	covariates,	and	briefly	discusses	inference.	Section	6	describes	a	calibrated	simulation	
study.	Section	7	gives	additional	results	for	the	teacher	collective	bargaining	application.	Finally,	
Section	8	discusses	some	directions	for	future	work.	The	appendix	includes	further	analyses	and	
technical	results.	In	particular,	we	provide	an	alternative	motivation	for	our	proposed	partially	
pooled	estimator,	which	we	show	is	based	on	partially	pooling	parameters	in	the	Lagrangian	dual	
of	the	SCM	constrained	optimization	problem.

2 |  PRELIMINARIES

2.1 | Setup and notation

We	 consider	 a	 panel	 data	 setting	 where	 we	 observe	 outcomes	Yit	 for	 i  =  1,  …,  N	 units	 over	
t = 1, …, T	time	periods.	In	the	teacher	collective	bargaining	application,	N = 49	and	T = 39	years.	
Some	but	not	all	of	the	units	adopt	the	treatment	during	the	panel;	once	units	adopt	treatment,	
they	stay	treated	for	the	remainder	of	the	panel.	Let	Ti	represent	the	time	period	that	unit	i	re-
ceives	treatment,	with	Ti = ∞	denoting	never-	treated	units.	Without	loss	of	generality,	we	order	
units	so	that	T1 ≤ T2 ≤ … ≤ TN.	We	assume	that	there	are	a	non-	zero	number	of	never-	treated	
units,	N0 ≡

∑
i�Ti =∞,	and	we	let	J = N −N0 =

∑
i�Ti≠∞

.	To	clearly	differentiate	units	that	are	
eventually	treated,	we	index	them	by	j = 1, …, J.

We	adopt	a	potential	outcomes	framework	to	express	causal	quantities	(Neyman,	1923;	Rubin,	
1974)	and	assume	stable	treatment	and	no	interference	between	units	(SUTVA;	Rubin,	1980).	In	
principle,	each	unit	i	in	each	time	t	might	have	a	distinct	potential	outcome	for	each	potential	
treatment	time	s,	Yit(s),	for	s = 1, …, T,	∞.	Following	Athey	and	Imbens	(2021),	we	assume	that	
prior	to	treatment,	a	unit’s	potential	outcomes	are	equal	to	its	never-	treated	potential	outcome	
(see	also	Abbring	&	Van	den	Berg,	2003):

Assumption 1	 (No	anticipation).	Yit(s) = Yit(∞)	for	t < s,	with	treatment	time	s.

This	 assumption	 generalizes	 the	 consistency	 assumption	 typically	 employed	 in	
cross-	sectional	 studies.	 We	 maintain	 it	 throughout.	 With	 it,	 the	 observed	 outcome	 is	
Yit = �{t < Ti}Yit(∞) + �{t ≥ Ti}Yit(Ti).

2.2 | Estimands

As	is	common	in	many	panel	data	settings,	we	focus	on	effects	a	specified	duration	after	treatment	
onset,	known	as	event time.	For	treated	unit	j,	we	index	event	time	relative	to	treatment	time	Tj	by	
k = t − Tj.	The	unit-	level	treatment	effect	for	treated	unit	j	at	event	time	k	is	the	difference	between	
the	potential	outcome	at	time	Tj + k	under	treatment	at	time	Tj	and	under	never	treatment:	

	By	Assumption	1,	� jk = 0	for	any	k < 0.
The	unit-	specific	effects,	� jk,	are	often	the	central	quantities	of	interest	in	many	synthetic	con-

trols	analyses.	In	addition	to	these	effects,	we	also	focus	on	their	average.	Our	primary	averaged	
estimand	is	the	average	treatment	effect	on	the	treated	(ATT)	k	periods	after	treatment	onset:	

� jk = YjTj+k(Tj) − YjTj+k(∞).
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We	 are	 also	 interested	 in	 the	 average	 post-	treatment	 effect,	 averaging	 across		
k: ATT =

1

K +1

∑K
k=0 ATTk	.	Our	methods	generalize	to	many	other	estimands;	see	Callaway	

and	Sant’Anna	(2020)	for	examples	in	this	setting.
A	challenge	for	staggered	adoption	analyses	is	that	a	panel	that	is	balanced	in	calendar	time	

is	necessarily	imbalanced	in	event	time.	That	is,	we	observe	outcomes	ℓ	periods	before	treatment	
only	for	units	treated	after	period	ℓ,	and	we	observe	outcomes	k	periods	after	treatment	only	for	
treated	units	treated	before	T − k.	This	means	that	populations	of	treated	units	over	which	one	
can	average	treatment	effects	vary	with	k,	as	do	the	possible	donors.	To	minimize	this	problem,	
we	assume	that	all	treated	units	are	observed	for	at	least	several	periods	before	being	treated	(i.e.	
T1 ≫ 1)	and	for	at	least	K ≥ 0	periods	after	treatment	(TJ ≤ T − K).	For	treated	unit	j,	we	will	
consider	outcomes	up	to	Lj ≤ Tj − 1	periods	before	treatment,	with	L ≡ maxj≤JLj	denoting	the	
maximum	number	of	lagged	outcomes.

With	this,	the	challenge	in	estimating	ATTk	for	k ≤ K	is	to	impute	the	average	of	the	missing	
never-	treated	potential	outcomes.	We	define	the	set	of	possible	‘donor	units’	for	treated	unit	j	at	event	
time	k	as	those	units	i	for	which	we	observe	YiTj+k(∞),	which	we	denote	jk ≡ {i: Ti > Tj + k}	.	
The	composition	of	jk	varies	with	both	treated	unit	j	and	event	time	k;	in	particular,	unit	i	with	
Ti < ∞	is	in	jk	for	k < Ti − Tj	but	not	for	k ≥ Ti − Tj.	We	focus	on	fixed	donor	pools	jK	rather	
than	allowing	the	donor	pools	to	vary	with	k.	This	limits	the	number	of	potential	donors,	but	
ensures	that	estimated	counterfactual	outcomes	do	not	vary	spuriously	across	event	time	due	to	
changing	composition	of	the	donor	pool.	Our	proposed	estimator	does	not	require	this	restric-
tion,	but	it	greatly	simplifies	exposition.	If	K ≥ TJ − T1	then	jk	will	only	include	never	treated	
units	as	donors;	otherwise	jk	will	include	both	never	treated	and	not-	yet-	treated	units.

In	our	empirical	application	we	exclude	Wisconsin—	which	adopted	a	mandatory	collective	
bargaining	law	in	the	second	year	of	the	sample—	so	the	first	treated	state	is	Connecticut	with	
T1 = 7.	We	follow	Paglayan	(2019)	in	considering	treatment	effects	only	up	to	event	time	K = 10,	
and	use	as	potential	donors	for	treated	state	j	any	states	that	are	not	treated	by	Tj + 10.

2.3 | Restrictions on the data generating process

We	now	detail	various	restrictions	on	the	data	generating	process	that	we	will	consider	below.	
Because	we	are	interested	in	treatment	effects	on	treated	units—	and	observe	potential	outcomes	
under	 treatment—	we	 will	 place	 restrictions	 only	 on	 the	 potential	 outcomes	 under	 the	 never	
treated	condition	Yit(∞)	(see,	e.g.	Borusyak	et al.,	2021).	Throughout,	we	follow	Chernozhukov	
et al.	(2021)	and	Ben-	Michael	et al.	(2021)	and	write	these	potential	outcomes	as	a	model	com-
ponent	plus	additive	noise.

We	consider	two	alternative	restrictions	on	the	model	terms	and	noise	terms,	corresponding	
to	two	common	data	generating	processes	for	Yit(∞):	a	time-	varying	autoregressive	process	and	
a	linear	factor	model.

Assumption 2	 (Data	generating	processes).	We	consider	the	following:

(a)		 	The	 untreated	 potential	 outcomes	 Yit(∞)	 follow	 a	 time-	varying	 AR(L)	 process	 with	 co-
efficients	 at	 time	 t	 (�t1, …, �tL) ∈ ℝ

L:	

ATTk ≡
1

J

J∑
j=1

� jk =
1

J

J∑
j=1

YjTj+k(Tj) − YjTj+k(∞).
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where	�it	are	mean	zero	and	independent	across	units	and	time,	with	𝜀is+k⊥⊥�{Ti = s}	for	k ≥ 0	
for	all	i = 1, …, N.

(b)		 	There	 are	 F	 latent	 time-	varying	 factors,	 where	 F	 is	 typically	 small	 relative	 to	 both	 N	 and	 T.	
The	 factors,	�t ∈ ℝ

F,	are	bounded,	maxt‖�t‖∞ ≤M.	Each	unit	has	a	vector	of	 time-	invariant	
factor	 loadings	�i ∈ ℝ

F,	 and	 the	 untreated	 potential	 outcomes	Yit(∞)	 are	 generated	 as:	

	where	�it	 are	 mean	 zero,	 independent	 across	 units	 and	 time	 and	𝜀it⊥⊥Ti	 for	 all	 i  =  1,  …,  N,	
t = 1, …, T.

Assumptions	2a	and	2b	impose	different	restrictions	on	the	noise	terms.	Assumption	2b	rules	
out	correlation	between	treatment	timing	and	the	noise	terms	for	any	period	while	Assumption	
2a	only	excludes	correlation	 for	noise	 terms	after	 treatment.	Therefore,	under	Assumption	2b	
treatment	timing	and	pre-	treatment	outcomes	are	only	dependent	through	the	factor	loadings,	
while	under	Assumption	2a	there	is	no	restriction	on	their	dependence.

Finally,	under	each	process,	we	assume	that	the	noise	terms	do	not	have	fat	tails.

Assumption 3.	 �it	are	sub-	Gaussian	random	variables	with	scale	parameter	σ.

We	use	this	restriction	on	the	tail	behaviour	for	the	finite	sample	estimation	error	bounds	we	
introduce	in	Section	3.

2.4 | The synthetic control method

In	the	synthetic	control	method	(SCM),	the	counterfactual	outcome	under	control	is	estimated	
from	a	weighted	average,	known	as	a	 synthetic control,	of	untreated	units,	where	weights	are	
chosen	to	minimize	the	squared	imbalance	between	the	lagged	outcomes	for	the	treated	unit	and	
the	weighted	control	(‘donor’)	units.

We	consider	a	modified	version	of	the	original	SCM	estimator	of	Abadie	et al.	(2010,	2015)	
for	a	single	treated	unit	j.	In	this	version,	the	SCM	weights	 �̂ j	are	the	solution	to	a	constrained	
optimization	problem:	

where	� j ∈ Δscm
j

	has	elements	{� ij}	that	satisfy	� ij ≥ 0	for	all	i,	
∑

i� ij = 1,	and	� ij = 0	whenever	i	is	
not	a	possible	donor,	i ∉jK.

Given	 an	 N-	vector	 of	 weights	 �̂ j	 that	 solve	 Equation	 (3),	 the	 SCM	 estimate	 of	 the	 missing	
	potential	outcome	for	treated	unit	j	at	event	time	k,	YjTj+k(∞),	is:	

(1)Yit(∞) =

L∑
�=1

�t�Yit−�(∞) + �it,

(2)Yit(∞) = �i ⋅ �t + �it,

(3)
min

� j ∈Δscm
j

1

Lj

Lj∑
�=1

(
YjTj−� −

N∑
i=1

� ijYiTj−�

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
objective

+ �
N∑
i=1

�2ij

⏟⏟⏟
regularization

,
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with	 estimated	 treatment	 effect	 �̂ jk = YjTj+k − Ŷ jTj+k
(∞).	 This	 formulation	 can	 also	 be	 applied	

when	k < 0,	generating	placebo	treatment	effect	estimates,	often	referred	to	as	‘gaps’.	We	denote	the	
vector	of	placebo	pre-	treatment	effect	estimates	as	�̂pre

j
= (�̂ j(−L), …, �̂ j(−1)) ∈ ℝ

L,	where	we	define	
�̂ j(−�)	to	be	zero	for	� > Lj.	With	this	notation,	the	synthetic	controls	objective	in	Equation	(3)	is	the	
mean	squared	placebo	treatment	effect	on	pre-	treatment	outcomes:	

The	 optimization	 problem	 in	 Equation	 (3)	 modifies	 the	 original	 SCM	 proposal	 in	 two	 key	
ways.	First,	where	Abadie	et al.	(2010,	2015)	balance	auxiliary	covariates,	we	focus	exclusively	
on	lagged	outcomes;	we	re-	introduce	auxiliary	covariates	in	Section	5.2.	Second,	following	a	sug-
gestion	in	Abadie	et al.	(2015),	we	include	a	term	that	penalizes	the	weights	towards	uniformity,	
with	hyperparameter	λ.	While	we	penalize	the	sum	of	the	squared	weights,	there	are	many	op-
tions,	for	example,	an	entropy	or	elastic	net	penalty	(see	Abadie	&	L’Hour,	2021;	Doudchenko	&	
Imbens,	2017).	In	settings	where	it	is	possible	to	achieve	perfect	balance,	selecting	λ > 0	ensures	
that	Equation	(3)	has	a	unique	solution.	This	is	not	the	case	in	our	setting,	however,	and	so	we	
largely	view	this	term	as	a	technical	convenience.

Abadie	(2019)	gives	several	reasons	for	preferring	SCM	to	outcome	models	such	as	linear	re-
gression	or	directly	fitting	the	factor	model.	In	particular,	SCM	weights	are	guaranteed	to	be	non-	
negative,	 and	 are	 generally	 sparse	 and	 interpretable.	 By	 contrast,	 alternatives	 based	 on	 explicit	
models	for	Yit(∞)	often	imply	negative	weights	and	thus	unchecked	extrapolation	outside	the	sup-
port	of	the	donor	units.	Outcome	modelling	can	also	be	sensitive	to	model	mis-	specification,	such	
as	selecting	an	incorrect	number	of	factors	in	a	factor	model.	Finally,	as	we	emphasize	in	our	theo-
retical	results	in	the	next	section,	SCM	can	be	appropriate	under	multiple	data	generating	processes	
(e.g.	both	the	autoregressive	model	and	the	linear	factor	model)	so	that	it	is	not	necessary	for	the	
applied	researcher	to	take	a	strong	stand	on	which	is	correct.

A	central	question	for	SCM	is	how	to	assess	whether	Ŷ jTj+k
(∞)	is	a	reasonable	estimate	for	

YjTj+k(∞).	A	minimal	condition	is	that	the	SCM	weights	achieve	a	low	root	mean	squared	pla-
cebo	treatment	effect,	that	is,	qj(�̂ j)	is	close	to	zero.	If	it	is	not	close	to	zero,	there	is	a	concern	that	
estimated	effects	also	capture	 systematic	differences	between	Ŷ jTj+k

(∞)	 and	YjTj+k(∞).	Under	
versions	of	either	Assumptions	2a	or	2b	and	for	a	single	treated	unit,	Abadie	et al.	(2010)	show	
that	if	qj(�̂ j) = 0	then	the	bias	will	tend	to	zero	as	Lj → ∞;	Ben-	Michael	et al.	(2021)	bound	the	
estimation	error	of	�̂ jk	in	terms	of	qj(�̂ j).	Abadie	et al.	(2010,	2015)	recommend	that	researchers	
only	proceed	with	an	SCM	analysis	if	the	pre-	treatment	fit	is	excellent,	while	Ben-	Michael	et al.	
(2021)	propose	an	augmented	SCM	estimator	that	attempts	to	salvage	cases	where	it	is	not.

3 |  ESTIMATION ERROR UNDER STAGGERED ADOPTION

In	order	to	extend	SCM	to	the	staggered	adoption	setting,	we	first	develop	appropriate	balance	
measures	 for	 synthetic	 control-	style	 weighting	 estimators	 under	 staggered	 adoption.	 We	 use	

Ŷ jTj+k
(∞) =

N∑
i=1

�̂ ijYiTj+k ,

(4)(qj(�̂ j))
2 ≡

1

Lj

‖‖‖�̂
pre
j

‖‖‖
2

2
=

1

Lj

Lj∑
�=1

(
YjTj−� −

N∑
i=1

�̂ ijYiTj−�

)2

.
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these	to	develop	bounds	on	the	estimation	error	for	the	ATT	for	our	two	example	data	generat-
ing	processes.	These	bounds	in	turn	motivate	our	proposal	for	partially	pooled	SCM	as	a	way	to	
choose	weights	under	staggered	adoption.

3.1 | Weights and measures of balance

With	 multiple	 treated	 units,	 we	 can	 generalize	 the	 above	 setup	 to	 allow	 for	 weights	 for	 each	
treated	 unit.	 For	 each	 j ≤  J,	 let	� j ∈ Δscm

j
	 be	 an	 N-	vector	 of	 weights	 on	 potential	 donor	 units,	

where	� ij	is	the	weight	on	unit	i	in	the	synthetic	control	for	treated	unit	j.	We	collect	the	weights	
into	an	N-	by-	J	matrix	Γ = [�1, …, �J ] ∈ Δscm,	where	Δscm = Δscm

1 ×…×Δscm
J

.	The	estimated	
treatment	effect	on	unit	j	at	event	time	k	is	then	̂� jk	as	defined	above,	and	the	estimated	ATT	aver-
ages	over	the	unit-	level	effect	estimates:	

Equation	(5)	highlights	two	equivalent	interpretations	of	the	estimator:	as	the	average	of	unit-	
specific	SCM	estimates	and	as	an	SCM	estimate	for	the	average	treated	unit.

Using	the	two	interpretations	of	the	ATT	estimator	in	Equation	(5),	we	construct	goodness-			
of-	fit	measures	for	the	ATT	by	aggregating	 �̂pre

j
	 in	two	ways.	First,	we	consider	the	root	mean	

square	of	the	pre-	treatment	fits	across	treated	units,	

This	is	a	useful	measure	of	overall	imbalance	when	SCM	is	estimated	separately	for	each	treated	unit	
and	generalizes	the	objective	for	the	single	synthetic	control	problem.	Second,	we	consider	the	pre-	
treatment	fit	for	the	average	of	the	treated	units,	

We	refer	to	this	interchangeably	as	the	pooled	or	global	fit.
Both	qpool	and	qsep	are	on	the	same	scale	as	the	estimated	treatment	effect,	ÂTTk.	However,	the	

measures	differ	in	whether	they	average	before	or	after	evaluating	the	pre-	treatment	fit.	Thus,	we	
typically	expect	(qpool)2 ≪ (qsep)2,	since	the	lagged	outcomes	for	the	average	of	the	treated	units	
are	less	extreme	than	the	lagged	outcomes	for	the	units	themselves.	In	practice,	we	therefore	con-
sider	normalizing	the	imbalance	measures	by	their	values	computed	with	weights	Γ̂

sep
,	the	set	of	

solutions	to	Equation	(3)	applied	separately	to	each	treated	unit.	We	define	normalized	measures	
q̃pool(Γ) ≡ qpool(Γ)∕qpool(Γ̂

sep
)	and	q̃sep(Γ) ≡ qsep(Γ)∕qsep(Γ̂

sep
),	and	use	them	in	our	proposed	esti-

mator	in	Section	4	below.
Ideally,	 both	 qsep	 and	 qpool	 would	 be	 close	 to	 zero;	 indeed	 if	 qsep = 0	 then	 qpool	 is	 also	

zero.	When	 this	 is	 not	 possible,	 there	 is	 a	 trade-	off	 between	 these	 two	 sources	 of	 imbalance.		

(5)ÂTTk =
1

J

J∑
j=1

�̂ jk =
1

J

J∑
j=1

[
YjTj+k −

N∑
i=1

�̂ ijYiTj+k

]
=
1

J

J∑
j=1

YjTj+k −

N∑
i=1

J∑
j=1

�̂ ij

J
YiTj+k .

qsep(Γ̂) ≡

�����1

J

J�
j=1

q2
j
(�̂ j) =

�����1

J

J�
j=1

1

Lj
‖�̂pre

j
‖2
2
=

�����1

J

J�
j=1

1

Lj

Lj�
�=1

�
YjTj−�−

N�
i=1

�̂ ijYiTj−�

�2

.

qpool(�Γ) ≡
1√
L

������
1

J

J�
j=1

�𝜏pre
j

������2
=

������ 1

L

L�
�=1

⎡⎢⎢⎣
1

J

�
Tj>�

YjTj−�−

N�
i=1

�𝛾 ijYiTj−�

⎤⎥⎥⎦

2

.
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Our	proposed	‘partially	pooled’	SCM	estimator	generalizes	Equation	(3)	to	minimize	a	weighted	
average	of	their	normalized	squares,	�(q̃pool)2 + (1 − �)(q̃sep)2,	where	ν	is	a	hyperparameter	se-
lected	by	the	researcher.	To	motivate	this	and	to	inform	the	choice	of	ν,	we	develop	error	bounds	
for	SCM-	style	weights	under	our	two	data	generating	models.

3.2 | Error bounds

3.2.1	 |	 Autoregressive	model

We	first	bound	the	estimation	error	for	the	ATT	under	the	autoregressive	process	in	Assumption	
2a.	To	simplify	notation	and	concepts,	we	initially	focus	on	the	ATT	at	event	time	k = 0,	ATT0.	
Two	summaries	of	the	autoregressive	coefficients	are	important	to	our	analysis:	� =

1

J

∑J
j=1 �Tj,	

the	average	autoregression	coefficient	across	the	J	treatment	times,	and	S2� ≡
1

J

∑J
j=1 ‖�Tj −�‖2

2
,	

the	corresponding	variance;	this	variance	is	zero	under	simultaneous	adoption,	S2� = 0.

Theorem 1. Under Assumptions 2a and 3 with Lj = L < T1 for j = 1, …, J, for Γ̂ ∈ Δscm, where �̂ j 
is independent of �⋅Tj+k, and for any δ > 0, the error for ÂTT0 is 

with probability at least 1 − 2e−
�2

2 , where for a matrix A ∈ ℝ
n×m, ‖A‖F =

�∑n
i=1

∑m
j=1 A

2
ij
 is the 

Frobenius norm.

Theorem	1	shows	that	the	error	for	the	ATT	is	bounded	by	several	distinct	terms,	giving	guid-
ance	for	the	choice	of	the	weights	Γ.	First,	error	arises	from	the	level	of	both	the	global	fit	and	
the	unit-	specific	fits.	The	relative	importance	of	these	fits	is	governed	by	the	ratio	of	the	average	
coefficient	value	‖�‖2	and	the	standard	deviation	S�	for	the	autoregressive	coefficients	over	time.

Second,	there	is	error	due	to	post-	treatment	noise,	inherent	to	any	weighting	method.	Because	
the	weights	are	 independent	of	post-	treatment	outcomes,	 this	 term	has	mean	zero	and	enters	
the	 finite	 sample	 bound	 above	 through	 the	 standard	 deviation,	 which	 is	 proportional	 to	 the	
Frobenius	norm	of	the	weight	matrix,	‖ Γ̂‖F.	Thus,	when	selecting	among	weight	matrices	that	
yield	similar	unit-	specific	and	pooled	balance,	we	should	prefer	the	one	that	minimizes	‖ Γ̂‖F.	
This	motivates	a	penalty	term	similar	to	that	in	Equation	(3).

Finally,	we	can	extend	 the	bound	 in	Theorem	1	 to	ATTk	by	noting	 that	 the	autoregressive	
structure	 implies	 that	 YiTj+k∞ =

∑L
�=1 �

(k)
t�
YiTj−�∞ +

∑k
s=0 �

(k)
s �iTj+s	 for	 some	 set	 of	 coefficients	

�(k)
t1
,…�(k)

tL
	and	�(k)

0
, …, �(k)

k
.	We	can	then	apply	Theorem	1	to	obtain	bounds	for	|||ÂTTk −ATTk

|||	by	

defining	 �	 and	S�	 in	 terms	 of	 the	 new	 coefficients	�(k)
t�

	 and	 replacing	 σ	 with	 �
�
1 +

∑
s

�
�(k)s

�2 .	

Similarly,	we	can	obtain	bounds	for	the	overall	ATT =
1

K +1

∑K
k=0 ATTk,	by	noting	that	the	aver-

age	outcome	over	K+1	periods	following	treatment	can	again	be	written	as	a	weighted	sum	of	the	
last	L	outcomes	before	treatment	plus	a	weighted	sum	of	the	K	+ 1	errors	following	treatment.	
Thus,	with	suitable	redefinition	of	the	parameters,	Theorem	1	continues	to	apply.

���ÂTT0 −ATT0
��� ≤

√
L‖�‖2qpool(Γ̂)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
pooled fit

+
√
LS� q

sep(Γ̂)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
unit− specific fit

+
��√
J

�
1 + ‖ Γ̂‖F

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise
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3.2.2	 |	 Linear	factor	model

Next	we	consider	 the	 linear	 factor	model	 in	Assumption	2b	and	begin	by	defining	additional	
notation.	Let	Ωj ∈ ℝ

L×F	denote	the	matrix	of	factor	values	for	time	Tj − L	to	Tj − 1,	and	denote	
P(j) =

√
L(Ω�

jΩj)
−1Ω�

j ∈ ℝ
F×L	as	the	scaled	projection	matrix	from	outcomes	to	factors.	Analogous	

to	the	autoregressive	process	above,	the	average	(projected)	factor	value	across	the	J	treatment	
times,	�k =

1

J

∑J
j=1 P

(j)��Tj+k,	and	the	variance,	S2
k
=

1

J

∑J
j=1 ‖P(j)��Tj+k−�k‖22,	determine	the	rela-

tive	importance	of	the	pooled	and	unit-	specific	fits	respectively.

Theorem 2. Assume that Ωj is non- singular and ‖ 1√
L
Ωj‖2 = 1 for j = 1, …, J. With Lj = L < T1  

for j = 1, …, J, �̂1, …, �̂J ∈ Δscm where �̂ j is independent of �⋅Tj+k, k ≥ 0, and δ > 0, under 
Assumptions 2b and 3 the error for ÂTTk is 

with probability at least 1 − 6e−
�2

2 , where maxt‖�t‖∞ ≤M.

Theorem	2	shows	that	under	the	linear	factor	model	the	error	for	the	ATT	can	again	be	con-
trolled	by	the	level	of	pooled	fit	and	unit-	specific	fits.	As	in	Theorem	1,	the	relative	importance	
of	these	fits	is	governed	by	the	ratio	of	the	average	factor	value	�k	and	the	standard	deviation	Sk;	
similarly,	under	simultaneous	adoption,	Sk = 0	and	qsep	does	not	enter	the	bound.

Unlike	 in	 Theorem	 1,	 this	 bound	 also	 includes	 an	 approximation	 error	 that	 arises	 due	 to	
balancing—	and	possibly	over-	fitting	to—	noisy	outcomes	rather	than	to	the	true	underlying	fac-
tor	loadings.	In	the	worst	case,	the	J	synthetic	controls	match	on	the	noise	rather	than	the	factors.	
Constraining	the	weights	to	lie	in	the	simplex	reduces	the	impact	of	this	worst	case,	however,	and	
the	error	decreases	as	more	lagged	outcomes	are	balanced;	see	Abadie	et al.	(2010);	Ben-	Michael	
et al.	(2021);	Arkhangelsky	et al.	(2019)	for	further	discussion.

Finally,	we	can	extend	Theorem	2	to	the	estimation	error	of	the	overall	post-	treatment	effect,	
ATT =

1

K +1

∑K
k=0 ATTk,	by	noting	that	the	average	post-	treatment	potential	outcome	also	fol-

lows	a	linear	factor	structure	with	factor	values	 1

K +1

∑K
k=0 �Tj+k	and	noise	term	 1

K +1

∑K
k=0 �iTj+k.	

Thus	the	pooled-		and	unit-	specific	 fit	 terms	and	the	approximation	error	will	depend,	respec-
tively,	on	the	average,	variance	and	maximum	of	the	(projected)	average	post-	treatment	factor	
value,	and	the	noise	term	will	be	reduced	by	a	factor	of	 1√

K +1
.

4 |  PARTIALLY POOLED SCM

We	now	turn	to	our	main	proposal,	partially pooled SCM.	Motivated	by	the	finite	sample	error	
bounds	in	Theorems	1	and	2,	this	chooses	SCM	weights	to	minimize	a	weighted	average	of	the	
(squared)	pooled	and	unit-	specific	pre-	treatment	fits:	

���ÂTTk −ATTk
��� ≤ ‖�k‖2 qpool(Γ̂)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
pooled fit

+ Sk q
sep(Γ̂)

⏟⏞⏞⏟⏞⏞⏟
unit− specific fit

+
�M2F√

L

�
3� + 2

√
logNJ

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
approximation error

+
��√
J

�
1 + ‖ Γ̂‖F

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise

(6)
min

Γ∈Δscm
�(q̃pool(Γ))2 + (1 − �)(q̃sep(Γ))2 + �‖Γ‖2F .
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The	hyperparameter	ν  ∈  [0, 1]	governs	the	relative	importance	of	the	two	objectives;	higher	values	
of	ν	correspond	to	more	weight	on	the	pooled	fit	relative	to	the	separate	fit.	In	Appendix	A.3,	we	
show	that	intermediate	values	of	ν	correspond	to	a	partial	pooling	solution	for	the	weights	in	the	
dual	parameter	space,	motivating	our	choice	of	a	name.

The	optimization	in	Equation	(6)	differs	from	the	bounds	in	Section	3	in	two	practical	ways.	
First,	we	minimize	the	normalized	imbalance	measures	(e.g.	q̃pool	rather	than	qpool),	so	that	the	
minimum	with	ν = 0	and	λ = 0	is	indexed	to	1.	This	ensures	that	the	two	objectives	are	on	the	
same	scale,	regardless	of	the	number	of	treated	units,	and	makes	it	easier	to	form	intuition	about	
ν.	Second,	we	minimize	the	squared	imbalances,	which	permits	a	computationally	feasible	qua-
dratic	program.	As	with	the	single	synthetic	controls	problem	in	Equation	(3),	we	penalize	the	
sum	of	the	squared	weights,	‖Γ‖2

F
.

4.1 | Special cases: Separate SCM (ν = 0) and Pooled SCM (ν = 1)

We	first	consider	two	special	cases	of	Equation	(6),	which	correspond	to	extreme	values	of	the	
hyperparameter	ν,	and	then	consider	intermediate	cases.

To	date,	common	practice	for	staggered	adoption	applications	of	SCM	is	to	estimate	separate	
SCM	fits	for	each	treated	unit,	then	estimate	the	ATT	by	averaging	the	unit-	specific	treatment	
effect	estimates.	This	approach,	which	we	refer	to	as	separate	SCM,	minimizes	qsep	alone	and	is	
equivalent	to	our	proposal	in	Equation	(6)	with	ν = 0.	Since	this	separate	SCM	strategy	prioritizes	
the	unit-	specific	estimates,	 �̂ jk,	an	important	question	is	when	this	approach	will	also	give	rea-
sonable	estimates	of	ATTk.	From	Theorems	1	and	2,	we	can	see	that	if	the	unit-	specific	fits	are	all	
excellent,	then	the	estimation	error	|||ÂTTk −ATTk

|||	will	be	small.	However,	this	is	not	the	case	in	
our	application.	Figure	2a	shows	SCM	‘gap	plots’	of	 �̂ j�	against	ℓ	 for	 three	 illustrative	 treated	
states,	taken	one	at	a	time.	While	Ohio	shows	relatively	good	pre-	treatment	fit,	there	are	no	syn-
thetic	controls	that	closely	track	Illinois	or	New	York’s	pre-	treatment	outcomes.	Thus,	simply	aver-
aging	the	estimated	treatment	effects	across	these	three	states	without	attention	to	the	overall	fit	
does	not	yield	a	convincing	estimate.	Other	recent	applications	also	face	the	same	issue	where	sev-
eral	treated	units	have	poor	pre-	treatment	fit	(see	e.g.	Dube	&	Zipperer,	2015;	Donohue	et al.,	2019).3

The	other	extreme	case,	which	we	refer	to	as	pooled SCM,	instead	sets	ν = 1,	finding	weights	
that	minimize	qpool,	the	root	mean	squared	placebo	estimate	of	the	ATT.	This	ignores	the	unit-	
specific	pre-	treatment	fits	in	the	objective,	resulting	in	poor	unit-	level	synthetic	controls	and,	in	
turn,	leading	to	poor	estimates	of	the	unit-	level	treatment	effects	� jk.	Furthermore,	even	if	the	
ATT	is	the	only	estimand	of	interest,	Theorems	1	and	2	indicate	that	separate	SCM	is	unlikely	to	
control	the	error.	In	particular,	if	the	pooled	weights	do	a	poor	job	of	matching	individual	treated	
units,	the	pooled	synthetic	control	may	involve	a	great	deal	of	interpolation	and	the	component	
of	the	error	bound	due	to	separate	imbalance	can	be	large.	In	Section	6	we	validate	through	sim-
ulation	that	pooled	SCM	leads	to	substantially	worse	unit-	level	estimates	than	separate	SCM,	and	
also	that	there	are	indeed	settings	where	the	bounds	in	Theorems	1	and	2	do	bind,	leading	to	large	
error	in	pooled	SCM	estimates	of	the	ATT.	See	Abadie	and	L’Hour	(2021)	for	further	discussion	
on	interpolation	bias	in	synthetic	control	settings.

However,	there	are	special	cases	where	only	controlling	qpool	with	pooled	SCM	is	sufficient.	
Theorems	1	and	2	indicate	that	only	the	across	treated	unit	variation	in	�Tj+k	and	�Tj+k	leads	to	

	3One	way	to	address	this	is	to	trim	the	sample	and	drop	treated	units	with	poor	pre-	treatment	fit,	noting	that	this	
changes	the	estimand.
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F I G U R E  2 	 (a)	SCM	pre-	treatment	fit	for	three	states:	(i)	Ohio,	with	good	overall	fit,	(ii)	Illinois,	where	SCM	
fails	to	match	an	important	pre-	treatment	trend,	and	(iii)	New	York,	with	pre-	treatment	imbalance	roughly	an	
order	of	magnitude	larger	than	typical	estimates	for	the	impact	of	teacher	mandatory	bargaining.	(b)	SCM	fits	by	
state	show	that	Separate	SCM	gives	better	pre-	treatment	fit	than	Pooled	SCM	for	all	treated	states	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]

(a)

(b)
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unit-	specific	 fits	 contributing	 to	 the	error	bounds.	Thus,	when	 this	variation	 is	 zero,	 the	ATT	
error	bound	is	minimized	with	ν = 1.	As	we	discuss	above,	under	simultaneous	adoption,	with	
T1 = … = TJ,	S� = 0	 in	 the	autoregressive	model	and	Sk = 0	 in	 the	 linear	 factor	model.	The	
same	arises	 in	staggered	adoption	settings	where	the	data	generating	process	 is	homogeneous	
over	time—	for	example,	where	�t ≡ �	in	the	autoregressive	model.	It	also	holds	approximately	
when	 the	average	autoregressive	coefficient	or	 factor	values	are	 large	 relative	 to	 the	 standard	
deviations—	that	is,	S𝜌 ≪ 𝜌	or	Sk ≪ 𝜇k,	which	could	justify	a	choice	of	ν = 1.	Finally,	when	units	
are	treated	in	cohorts	(with	Tj = Tk	for	units	in	the	same	cohort),	there	is	no	variation	in	�t	and	
�t	across	units	in	the	same	cohort.	This	suggests	fully	pooling	(i.e.	averaging)	units	that	are	treated	
at	the	same	time,	even	if	there	is	only	partial	pooling	across	treatment	cohorts.	We	discuss	this	
modification	in	Appendix	A.2.

Figure	2b	plots	the	state-	level	pre-	treatment	imbalances	in	our	application	for	separate	SCM	
versus	pooled	SCM.	The	separate	SCM	fit	is	better	for	all	treated	states,	and	so	leads	to	more	cred-
ible	unit-	level	estimates.	However,	these	fits	are	far	from	perfect	and	so	the	results	from	Section	
3	imply	that	there	is	room	for	improvement	by	controlling	the	pooled	fit.	Figure	3a	shows	the	
implied	placebo	estimates	for	the	overall	ATT	using	the	separate	and	pooled	approaches:	they	are	
consistently	positive	for	separate	SCM	weights	and	are	all	nearly	zero	for	pooled	SCM	weights.	
At	the	same	time,	Figure	3b	shows	that	pooled	SCM	has	very	poor	unit-	level	fit,	leading	to	the	
potential	for	error	for	both	the	overall	ATT	estimate	and	the	unit-	level	estimates.	This	motivates	
choosing	an	intermediate	choice	of	ν  ∈  (0, 1).

4.2 | Intermediate choice of ν

As	we	have	seen,	it	is	important	to	control	both	the	pooled	fit	(for	the	ATT)	and	the	unit-	level	
fits	(for	both	the	ATT	and	the	unit-	level	estimates).	The	hyper-	parameter	ν	controls	the	relative	
weight	of	these	in	the	objective.

One	approach	to	choosing	ν	is	to	return	to	the	error	bounds	in	Theorems	1	and	2.	The	optimi-
zation	problem	in	Equation	(6)	can	be	seen	as	a	first-	order	approximation	to	the	squares	of	the	
error	bounds.	Therefore,	if	the	parameters	of	those	bounds	are	known—	and	our	only	goal	is	to	
estimate	the	ATT—	we	can	use	these	to	choose	an	appropriate	ν.4	Unfortunately,	these	will	gen-
erally	be	infeasible	as	the	analyst	will	not	know	these	parameters,	although	in	some	applications	
it	may	be	possible	to	obtain	pilot	estimates.

An	alternative	approach	is	to	directly	assess	the	implications	of	the	choice	of	ν	for	the	imbalance	
criteria	for	both	the	overall	ATT	and	the	unit-	level	effects.	Figure	4	provides	two	views	of	this	for	the	
teacher	collective	bargaining	application.	Figure	4a	shows	the	balance possibility frontier:	the	y-	axis	
shows	the	pooled	imbalance	qpool	and	the	x-	axis	shows	the	unit-	level	imbalance	qsep.	The	curve	traces	
out	how	these	change	as	we	vary	ν	from	the	separate	SCM	solution	at	the	upper	left	to	the	pooled	
solution	at	the	lower	right.	The	relationship	is	strongly	convex,	indicating	that	by	accepting	a	very	
small	increase	in	pooled	imbalance	from	the	fully	pooled	solution	we	can	obtain	large	reductions	in	
unit-	level	imbalance,	and	vice	versa	starting	from	the	separate	ν = 0	solution.	See	King	et al.	(2017)	
and	Pimentel	and	Kelz	(2020)	for	other	examples	of	balance	frontiers	in	observational	settings.

Figure	4b	plots	the	two	imbalances,	here	normalized	as	q̃pool	and	q̃sep,	to	put	them	on	com-
parable	scales,	against	ν.	As	ν	rises,	pooled	imbalance	falls	while	unit-	level	imbalance	rises,	

	4For	example,	in	the	autoregressive	model,	letting	a = ‖�‖2qpool(Γ̂sep)	and	b = S�q
sep(Γ̂

sep
),	we	could	choose	

� =
a2

a2 + b2
,	with	comparable	quantities	for	the	linear	factor	model.
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although	this	is	highly	nonlinear,	as	the	convex	frontier	in	Figure	4a	suggests.	Moving	from	
the	separate	SCM	estimate	of	ν = 0	 to	a	partially	pooled	SCM	estimate	of	ν = 0.5	reduces	
the	pooled	imbalance	by	80%,	with	more	modest	 further	reductions	as	ν → 1.	Meanwhile,	
the	unit-	level	imbalance	declines	quickly	as	ν	falls	from	1	to	0.9,	then	more	slowly	as	ν	de-
clines	further.	Even	a	very	small	deviation	from	the	pooled	SCM	solution,	such	as	moving	
from	ν = 1	to	ν = 0.99,	cuts	the	unit-	level	imbalance	by	30%	with	essentially	no	change	in	
the	 pooled	 fit.	 Due	 to	 the	 number	 of	 degrees	 of	 freedom	 involved,	 the	 pooled	 imbalance	

F I G U R E  3 	 (a)	Series	of	estimated	pre-		and	post-	treatment	effects	ÂTT
�
	and	(b)	state-	level	pre-	treatment	

RMSE	
�

1

L

∑L
�=1 �̂

2
j� 	using	separate,	pooled,	and	partially	pooled	SCM	[Colour	figure	can	be	viewed	at	

wileyonlinelibrary.com]

(a)

(b)
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will	 often	 be	 near	 zero	 for	ν =  1,	 and	 the	 objective	 function	qpool	 will	 be	 relatively	 flat	 in	
the	neighbourhood	of	 the	pooled	solution.	Therefore	we	expect	 that	 in	many	cases	 it	will	
be	 possible	 to	 trade-	off	 a	 small	 increase	 in	 pooled	 imbalance	 for	 a	 large	 decrease	 in	 the	
unit-	level	imbalance,	yielding	a	better	estimator	of	both	the	overall	ATT	and	the	unit-	level	
estimates	at	relatively	little	cost.	We	view	the	balance	possibility	frontier	plot	in	Figure	4a	as	

F I G U R E  4 	 (a)	The	trade-	off	between	pooled	imbalance	(qpool	)	and	unit-	specific	imbalance	(qsep)	as	ν	varies,	
where	ν = 0	is	the	separate	SCM	solution	and	ν = 1	is	the	pooled	SCM	solution.	(b)	qsep	and	qpool	versus	ν,	each	
normalized	by	their	values	for	separate	SCM.	The	dashed	red	line	indicates	�̂ .	The	large	distance	in	unit-	level	
imbalance	between	ν = 0.99	and	ν = 1	suggest	meaningful	gains	in	balance	from	deviating	from	the	complete	
pooling	estimate	even	by	a	small	amount	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

(a)

(b)
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an	important	tool	for	using	partially	pooled	SCM	in	practice.	By	tracing	out	the	curve,	prac-
titioners	can	see	the	trade-	offs	between	the	pooled	and	unit-	level	fit,	and	choose	ν	according	
to	the	trade-	off	they	desire.

In	our	application,	we	use	a	simple	heuristic	to	set	ν	based	on	the	pooled	fit	of	separate	SCM,	
qpool(Γ̂

sep
),	which	we	also	use	to	normalize	our	objective	function	in	Equation	(6).	We	set	ν	to	be	

the	ratio	of	the	pooled	fit	to	the	average	unit-	level	fit:	�̂ =
√
L qpool(Γ̂

sep
)∕ 1

J

∑J
j=1

√
Lj qj(�̂

sep
j
).	This	

is	bounded	above	by	1	due	to	the	triangle	inequality.5	The	key	idea	is	that,	if	the	separate	SCM	
problem	with	ν = 0	achieves	good	pooled	fit	on	its	own,	then	we	want	to	select	a	small	ν,	which	
will	ensure	both	good	unit-	specific	and	pooled	fit.	Conversely,	if	the	pooled	fit	of	separate	SCM	is	
poor,	then	there	can	be	substantial	gains	to	giving	qpool	higher	priority	by	setting	ν	to	be	large.	In	
Section	6	we	find	through	simulation	that	this	heuristic	results	in	weights	that	significantly	re-
duce	both	the	estimation	error	for	the	ATT	relative	to	separate	SCM	and	the	estimation	error	of	
the	unit-	level	effects	relative	to	pooled	SCM.

In	the	teacher	bargaining	example,	our	heuristic	yields	 �̂ ≈ 0.44	for	the	per-	pupil	expen-
diture	outcome,	and	we	label	this	point	in	Figure	4a.	The	heuristic	choice	has	similar	global	
pre-	treatment	imbalance	to	the	fully	pooled	estimator,	ν = 1,	with	only	a	modest	increase	in	
unit-	level	imbalance	relative	to	the	separate	SCM	estimate,	ν = 0.	This	is	reflected	in	Figure	3,	
which	also	shows	the	placebo	ATT	estimates	for	partially	pooled	SCM.	While	the	imbalance	
for	the	ATT	is	slightly	larger	than	for	pooled	SCM,	it	is	substantially	better	than	for	separate	
SCM.

There	are	many	other	potential	choices	for	ν,	and,	even	if	we	focus	solely	on	the	ATT,	this	one	
is	unlikely	to	be	optimal.	An	alternative	strategy	when	the	balance	possibility	frontier	exhibits	a	
strong	‘kink’	shape	is	to	choose	ν	to	be	the	point	after	which	small	improvements	to	the	pooled	fit	
lead	to	substantially	worse	unit-	level	fits.	Another	heuristic	is	to	choose	ν	to	be	the	point	where	
the	tangent	of	the	frontier	is	equal	to	the	slope	between	the	end	points	at	ν = 0	and	ν = 1	(ν = .84	
in	the	teacher	bargaining	application).

In	the	end,	the	nonlinear	relationship	between	ν	and	{qsep, qpool}	in	Figure	4b	suggests	that	the	
loss	from	choosing	a	suboptimal	ν	is	likely	to	be	small,	so	long	as	we	do	not	choose	something	too	
close	to	0	or	1.	We	also	recommend	inspecting	the	sensitivity	of	estimates	to	the	particular	choice	
of	ν	in	practice;	we	do	this	in	Section	7.

5 |  EXTENSIONS

We	now	add	two	elaborations	to	the	basic	setup.	First,	we	incorporate	an	intercept	shift	into	the	
SCM	problem,	following	proposals	by	Doudchenko	and	Imbens	(2017)	and	Ferman	and	Pinto	
(2021).	Second,	we	incorporate	auxiliary	covariates	alongside	lagged	outcomes.	We	conclude	by	
briefly	addressing	inference	in	this	setting.

5.1 | Incorporating intercept shifts

We	 have	 established	 that	 the	 partially	 pooled	 SCM	 estimator	 achieves	 nearly	 as	 good	 over-
all	 balance	 as	 the	 fully	 pooled	 estimator,	 while	 achieving	 much	 better	 balance	 for	 each	 unit.	

	5If	the	SCM	fits	with	ν=0	are	perfect	for	each	unit,	1
J

∑J
j=1

√
Lj qj = 0,	then	the	overall	fit	will	also	be	perfect,	√

L qpool = 0,	and	our	heuristic	sets	�̂ = 0.	This	is	not	a	common	situation.
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Nevertheless,	unit-	level	balance	is	often	imperfect.	Particularly	when	the	scale	of	the	outcome	
varies	across	units,	it	can	be	difficult	to	construct	an	adequate	synthetic	control,	as	one	needs	to	
match	both	the	overall	level	and	patterns	over	time.	Several	recent	papers	have	proposed	modify-
ing	SCM	for	a	single	treated	unit	by	allowing	for	an	intercept shift	between	the	treated	unit	and	its	
synthetic	control	(Abadie,	2019;	Doudchenko	&	Imbens,	2017;	Ferman	&	Pinto,	2021).	We	can	
adapt	this	approach	to	the	staggered	adoption	setting	by	including	an	additional	parameter	vec-
tor	� ∈ ℝ

J,	where	�j	is	an	intercept	term	for	unit	j.	We	include	this	intercept	in	the	counterfactual	
estimate	as	

	and	in	the	separate	and	pooled	imbalance	measures	as	

	and	

Again	we	can	define	normalized	versions	of	these	objectives,	̃qpool(�,Γ) ≡ qpool(�,Γ)∕qpool(�̂sep, Γ̂
sep
)	,	

where	�̂sep	and	Γ̂
sep

	are	the	minimizers	of	(qsep(�,Γ))2.	As	above,	we	then	form	an	overall	objective	
function	as	a	convex	combination	of	the	normalized	squares:	

The	intercept	̂�	that	solves	Equation	(7)	has	a	closed	form	in	terms	of	the	solution	for	the	weights,	̂Γ
∗
	;	

�̂j	is	the	average	pre-	treatment	difference	between	treated	unit	j	and	its	synthetic	control,	

Plugging	this	value	of	�̂	into	Equation	(7),	we	see	that	this	procedure	is	equivalent	to	solving	the	
partially	pooled	SCM	problem	(6)	using	the	residuals	Ẏ iTj−�

≡ YiTj−� −
1

Lj

∑Lj
�=1

YiTj−�.	The	result-

ing	treatment	effect	estimates	have	a	particularly	useful	form:	

Ŷ jt(∞) = �j +
N∑
i=1

� ijYit

(qsep(�,Γ))2 =
1

2J

J�
j=1

⎡⎢⎢⎣
1

Lj

Lj�
�=1

�
YjTj−� − �j−

N�
i=1

� ijYiTj−�

�2 ⎤⎥⎥⎦
,

(qpool(𝛼,Γ))2 =
1

L

L�
�=1

⎡⎢⎢⎣
1

J

�
Tj>�

�
YjTj−� − 𝛼j−

N�
i=1

𝛾 ijYiTj−�

�⎤⎥⎥⎦

2

.

(7)min
�∈ℝJ ,Γ∈Δscm

� (q̃pool(�,Γ))2 + (1 − �) (q̃sep(�,Γ))2 + �‖Γ‖2F .

(8)�̂j =
1

Lj

Lj∑
�=1

YjTj−� −
1

Lj

N∑
i=1

Lj∑
�=1

�̂∗ijYjTj−� .

(9)�̂∗jk =
1

Lj

Lj∑
�=1

[(
YjTj+k − YjTj−�

)
−

N∑
i=1

�̂∗ij

(
YiTj+k − YiTj−�

)]
,

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/84/2/351/7056152 by guest on 04 M

arch 2024



   | 369BEN-­MICHAEL­et al.

and	

We	can	view	this	as	a	weighted	difference-	in-	differences	(DiD)	estimator.	In	the	special	case	
with	uniform	weights	over	units,	̂�∗ij = 1∕‖j ‖,	Equation	(9)	is	the	simple	average	over	all	two-	
period,	two-	group	DiD	estimates,	averaging	over	all	pre-	treatment	lags	ℓ	and	donor	units	 i.	
This	is	equivalent	to	recent	proposals	for	DiD	estimators	that	allow	for	treatment	effect	het-
erogeneity	with	a	fixed	donor	set	per	treatment	time	cohort	(see	Callaway	&	Sant’Anna,	2020;	
Sun	&	Abraham,	2020,	among	others).	With	non-	uniform	weights,	�̂∗jk	compares	the	change	in	
outcomes	 for	 treated	unit	 j	 to	 the	change	for	 the	synthetic	control,	 rather	 than	the	average	
change	across	all	potential	donors.	Equation	(10)	averages	these	estimates	across	treated	units	
j	to	form	ÂTT

∗

k.
Figure	 5	 shows	 the	 value	 of	 including	 an	 intercept	 to	 improving	 pre-	treatment	 fit	 in	 the	

teacher	collective	bargaining	application.	Figure	5a	presents	this	as	a	balance	possibility	frontier	
for	SCM	with	the	weights	alone	and	with	the	intercept,	as	well	as	the	implied	imbalance	for	the	
DiD	estimator	alone.	Here,	simple	unweighted	DiD	achieves	unit-	level	and	pooled	balance	that	
improves	on	the	no-	intercept	SCM	possibility	frontier.	However,	the	intercept-	shifted	estimator	
dominates	both	DiD	and	no-	intercept	SCM	estimates	on	both	criteria,	for	all	but	the	largest	ν.	
We	see	similar	results	when	examining	the	state-	specific	fits.	Figure	5b	shows	the	unit-	level	fit	
for	both	partially	pooled	SCM	and	the	intercept-	augmented	version.	Two	states,	New	York	and	
Alaska,	have	especially	bad	pre-	treatment	fits	without	including	an	intercept	because	they	have	
the	highest	per-	pupil	expenditures	of	all	 the	states	 for	many	years	(see	Appendix	Figure	B.5).	
Accounting	for	the	pre-	treatment	average	through	the	intercept	dramatically	improves	the	fits	
for	these	states.

5.2 | Incorporating auxiliary covariates

We	have	focused	thus	far	on	matching	pre-	treatment	values	of	the	outcome	variable.	In	practice,	
we	typically	observe	a	set	of	auxiliary	covariates	Xi ∈ ℝ

d	as	well.	In	our	collective	bargaining	ap-
plication,	we	consider	five	covariates,	measured	as	of	the	start	of	the	sample	in	1959–	1960:	in-
come	per	capita,	the	student	to	teacher	ratio,	the	per	cent	of	the	population	with	12+	and	13+	
years	of	education,	and	the	female	labour	force	participation	rate.6	We	standardize	all	five	covari-
ates	to	have	mean	zero	and	variance	one.

There	are	several	ways	to	incorporate	auxiliary	covariates	in	the	setting	with	a	single	treated	
unit.	Here	we	directly	include	them	into	the	optimization	problem.	Analogous	to	above,	we	de-
fine	both	the	unit-	level	imbalance	and	pooled	imbalance	of	X,	

(10)ÂTT
∗

k =
1

J
�̂∗jk =

1

J

J�
j=1

⎡
⎢⎢⎣
1

Lj

Lj�
�=1

��
YjTj+k − YjTj−�

�
−

N�
i=1

�̂∗ij

�
YiTj+k − YiTj−�

��⎤⎥⎥⎦
.

	6Due	to	missing	data	for	these	auxiliary	covariates,	we	restrict	our	analysis	here	to	the	contiguous	United	States.	Note	
that	this	drops	Alaska,	which	we	have	seen	is	far	outside	the	convex	hull	of	its	donor	units.

q
sep
X
(Γ) =

√√√√√1

J

J∑
j=1

‖‖‖‖Xj−
∑N

i=1
� ijXi

‖‖‖‖
2

2
,
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and	another	for	the	pooled	synthetic	control,	

q
pool
X

(Γ) =

‖‖‖‖‖‖
1

J

J∑
j=1

Xj−

N∑
i=1

� ijXi

‖‖‖‖‖‖2
,

F I G U R E  5 	 (a)	The	balance	possibility	frontier	for	SCM	with	and	without	an	intercept,	as	well	as	the	implied	
imbalance	for	DiD.	Incorporating	unit-	level	fixed	effects	leads	to	substantial	improvements	in	balance.	For	
DiD,	we	compute	the	implied	balance	as	

�∑L
�=1

�
ÂTT

∗

−�

�2
,	the	RMSE	of	the	placebo	estimates,	from	Equation	

(9)	with	uniform	weights.	(b)	The	distribution	of	state-	level	fits	(in	terms	of	RMSE)	with	and	without	an	
intercept	and	covariates;	dashed	lines	show	the	pooled	pre-	treatment	RMSE	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

(a)

(b)
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with	normalized	versions	q̃sep
X
(Γ)	and	q̃pool

X
(Γ).7	We	then	include	these	in	our	objective,	with	an	addi-

tional	hyper-	parameter	ξ:	

While	we	write	this	optimization	problem	with	an	intercept	shift,	we	could	also	include	auxiliary	co-
variates	but	no	intercept.	The	choice	of	ξ	determines	the	relative	importance	of	the	outcomes	and	the	
auxiliary	covariates.	Setting	ξ = 0	recovers	the	optimization	problem	(7)	without	auxiliary	covariates,	
while	in	the	extreme	case	setting	ξ = ∞	will,	if	feasible,	enforce	exact	balance	on	the	auxiliary	covari-
ates.	We	decide	to	give	equal	priority	to	both	terms.	Since	the	auxiliary	covariates	are	standardized,	
we	set	ξ	to	be	the	sample	variance	of	the	pre-	TJ	outcomes	for	the	never	treated	units.	This	equally	
weights	both	components	in	the	objective	functions,	and	reduces	the	number	of	hyper-	parameters	
and	specification	choices.	Finally,	we	can	incorporate	time-	varying	covariates	by	including	the	val-
ues	at	time	periods	before	the	first	treatment	time	T1	into	the	vector	Xi.

Figure	6	shows	the	level	of	covariate	balance	between	each	treated	unit	and	its	synthetic	
control,	as	well	as	for	the	average	across	treated	units.	Before	weighting	there	are	large	differ-
ences	between	the	treated	units	and	their	donor	sets,	and	weighting	on	the	outcomes	alone	
does	 little	 to	alleviate	 these	differences.	 Including	 the	auxiliary	covariates	 into	 the	optimi-
zation	procedure	finds	weights	that	give	nearly	perfect	covariate	balance	for	the	pooled	syn-
thetic	control	(indicated	as	the	black	squares),	while	also	significantly	improving	covariate	
balance	 for	 the	 individual	 treated	 units	 (indicated	 as	 boxplots).	 Figure	 5b	 shows	 that	 this	

	7Specifically,	let	�̂sep	and	Γ̂
sep

	be	the	minimizers	of	(qsep(�,Γ))2 + �(qsep
X
(Γ))2,	and	(Csep)2 = (qsep(�̂sep, Γ̂

sep
))2 + �(qsep

X
(Γ̂

sep
))2	

and	(Cpool)2 = (qpool(�̂sep, Γ̂
sep
))2 + �(qpool

X
(Γ̂

sep
))2	be	the	combined	separate	and	pooled	imbalances.	We	define	the	

normalized	objectives	as	q̃pool
X

(Γ) = q
pool
X

(Γ)∕Cpool,	q̃sep
X
(Γ) = q

sep
X
(Γ)∕Csep,	and	slightly	abuse	notation	by	re-	defining	

q̃pool(�,Γ) ≡ qpool(�,Γ)∕Cpool	and	q̃sep(�,Γ) ≡ qsep(�,Γ)∕Csep.

(11)min
�∈ℝJ ,Γ∈Δscm

�
�
(q̃pool(�,Γ))2 + �(q̃pool

X
(Γ))2

�
+ (1 − �)

�
(q̃sep(�,Γ))2 + �(q̃sep

X
(Γ))2

�
+ �‖Γ‖2F .

F I G U R E  6 	 Distribution	of	the	absolute	difference	between	each	treated	unit	and	its	synthetic	control	
for	the	(standardized)	auxiliary	covariates,	before	weighting	and	with/without	including	covariates	in	the	
optimization	procedure.	Black	squares	show	the	absolute	average	difference	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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improved	covariate	balance	comes	at	a	small	cost	to	the	fit	on	the	pre-	treatment	outcomes:	
the	distribution	of	unit-	level	pre-	treatment	root	mean	square	error	(RMSE)	shifts	slightly	to	
the	right.

5.3 | Inference

There	 is	a	growing	 literature	on	 inference	 for	SCM-	type	estimators,	although	no	proposed	
approach	is	fully	satisfactory	for	all	cases.	In	settings	where	multiple	units	adopt	treatment	
simultaneously,	Abadie	and	L’Hour	(2021)	propose	an	extension	of	the	original	permutation	
procedure	of	Abadie	et al.	(2010),	and	Arkhangelsky	et al.	(2019)	propose	resampling-	based	
approaches.	 In	a	 staggered	adoption	setting,	Shaikh	and	Toulis	 (2021)	propose	a	weighted	
permutation	 approach	 based	 on	 a	 Cox	 proportional	 hazards	 model.	 This	 is	 not	 appropri-
ate	in	our	application,	however,	since	multiple	units	have	the	same	treatment	time,	which	
is	 incompatible	 with	 the	 Cox	 model.	 Finally,	 Cao	 and	 Lu	 (2019)	 propose	 an	 Andrews	 test	
for	inference	with	intercept-	shifted	SCM	under	staggered	adoption.	Building	on	the	existing	
literature,	we	consider	constructing	confidence	intervals	via	the	wild	bootstrap.	We	briefly	
describe	this	method	here;	we	address	asymptotic	Normality	and	inference	via	the	jackknife	
in	Appendix	A.1.

The	wild	bootstrap	approach	we	implement	adapts	the	proposal	from	Otsu	and	Rai	(2017)	for	
bias-	corrected	matching	estimators;	see	also	Imai	et al.	(2019).	First,	we	can	re-	write	ÂTTk	as	the	
following	average	over	units:	

This	 bootstrap	 procedure	 draws	 a	 sequence	 of	 random	 variables	W (b)
1
, …, W (b)

N
	 independently	

with	 P(Wi = − (
√
5 − 1)∕2) = (

√
5 + 1)∕2

√
5	 and	 P(Wi = (

√
5 + 1)∕2) = (

√
5 − 1)∕2

√
5	 for	

b = 1, …, B,	and	computes	the	boostrap	statistic:	

for	each	draw.	Letting	q�∕2	and	q1−�∕2	denote	the	α/2	and	1−α/2	quantiles	of	S(b),	we	construct	con-
fidence	intervals	via	[ÂTTk − q1−�∕2, ÂTTk + q�∕2].	Importantly,	we	keep	the	weights	and	outcomes	
fixed,	and	only	re-	sample	the	multiplier	variables	W (b)

i
.

In	the	next	section,	we	evaluate	the	coverage	of	the	wild	bootstrap	with	a	simulation	study	that	
mimics	the	structure	of	the	collective	bargaining	application.	In	Appendix	A.1,	we	take	an	alter-
native	route	and	motivate	the	use	of	resampling	methods	via	asymptotic	Normality.	In	particular,	
we	provide	a	set	of	sufficient	conditions	for	ÂTTk −ATTk	to	be	asymptotically	Normal.	We	con-
sider	an	asymptotic	regime	in	which	J , N0 → ∞,	with	the	number	of	lags	L	fixed	and	the	number	
of	control	units	growing	faster	than	the	number	of	treated	units	 J

N0
→ ∞.	We	also	adapt	a	gener-

alization	of	the	conditional	parallel	trends	assumption	in	Abadie	(2005)	to	the	staggered	adoption	
setting.	However,	there	are	several	ways	such	asymptotic	results	can	be	misleading.	First,	our	re-
sult	 assumes	 that	 the	 synthetic	 control	 weights	 can	 achieve	 perfect	 fit	 within	 treatment	 time	

(12)ÂTTk =
1

J

N�
i=1

TJ�
g=T1

⎛⎜⎜⎝
�Ti=g

−
�
Tj =g

�̂ ij

⎞⎟⎟⎠

�
Yig+k −

1

g − 1

g−1�
�=1

Yig−�

�
=
1

J

N�
i=1

�̃ i.

(13)S(b) =
1

J

N∑
i=1

W (b)
i

(
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)
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cohorts,	which	ensures	that	the	distribution	of	ÂTTk	is	centred	around	ATTk.	Poor	fit,	either	over-
all	or	across	time	cohorts,	can	lead	to	under-	coverage.	Second,	the	asymptotic	approximation	can	
be	poor	when	there	are	relatively	few	total	units,	and	the	use	of	resampling	methods	can	exacer-
bate	this.	Thus,	while	we	show	that	these	approaches	yield	reasonable	results	in	simulations,	we	
suggest	interpreting	any	confidence	intervals	for	typical	applications	with	caution.

6 |  SIMULATION STUDY

We	now	consider	the	performance	of	different	approaches	in	a	simulation	study	calibrated	to	the	
collective	bargaining	data	set;	we	turn	to	the	impacts	of	mandatory	teacher	collective	bargaining	
laws	in	the	actual	data	in	the	next	section.	We	evaluate	performance	with	three	different	data	
generating	processes.	First,	we	generate	never	 treated	outcomes	according	to	a	 two-	way	 fixed	
effects	model,	

with	both	unit	and	time	effects	are	normalized	to	have	mean	zero.	This	model	satisfies	the	parallel	
trends	assumption	needed	for	the	DiD	estimator	we	consider	below.	We	estimate	(14)	using	only	the	
never-	treated	observations,	and	extract	the	estimated	variance	of	the	unit	effects,	Σ̂,	and	of	the	error	
term,	�̂2�.	We	then	generate	uniti

iid
∼N(0, Σ̂)	and	�it

iid
∼N(0, �̂2�).

Second,	we	use	a	factor	model	with	a	two-	dimensional	latent	time-	varying	factor	�t ∈ ℝ
2	and	

unit-	specific	coefficients	�i ∈ ℝ
2:	

We	estimate	(15)	using	the	R	package	gsynth	(Xu,	2017)	for	the	untreated	units	and	time	periods,	
then	estimate	the	variance–	covariance	matrix	of	the	unit	fixed	effects	and	factor	loadings,	Σ̂,	and	the	
variance	of	the	error	term	̂�2�.	Here	we	use	the	estimated	{t̂imet , �̂t},	and	draw	{uniti,�i}

iid
∼MVN(0, Σ̂)	

and	�it
iid
∼N(0, �̂2�).

Finally,	we	have	a	random	effects	autoregressive	model:	

that	we	fit	using	lme4	(Bates	et al.,	2015)	to	obtain	estimates	�̂�	and	�̂�.	In	order	to	increase	the	
level	of	heterogeneity	across	time,	we	simulate	from	this	hierarchical	model	with	eight	times	the	
standard	deviation	8�̂�.	For	all	three	outcome	processes	we	generate	simulated	data	sets	with	the	
same	dimensions	as	the	data,	N = 49	and	T = 39,	and	impose	a	sharp	null	of	no	treatment	effect,	
Yit(s) = Yit(∞) = Yit.

A	key	component	of	the	simulation	model	is	selection	into	treatment.	We	fix	the	treatment	
times	to	be	the	same	as	in	the	teacher	unionization	application.	For	each	treatment	time,	we	as-
sign	treatment	to	those	units	not	already	treated	with	probability	�i,	sweeping	through	the	fixed	
set	of	treatment	times.	For	the	two-	way	fixed	effects	model,	we	set	the	probability	that	unit	i	is	
treated	at	each	treatment	 time	to	be	�i = logit(�0 + �1 ⋅ uniti),	with	�0 = − 2.7	and	�1 = − 1,	
yielding	around	30	units	that	are	eventually	treated	in	each	simulation	draw.	For	the	factor	model	

(14)Yit(∞) = int + uniti + timet + �it,

(15)Yit(∞) = int + uniti + timet + ��
i�t + �it.

(16)Yit(∞) =

3∑
�=1

��Yit−�(∞) + �it, � ∼ N(��, �
2
�),
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we	choose	�i = logit(�0 + �1(uniti + �i1 + �i2)),	and	set	�0 = − 2.7	and	�1 = − 1	so	that	around	
32	units	are	eventually	treated	in	each	simulation	draw,	following	the	distribution	of	the	data.	For	
the	 autoregressive	 process	 we	 allow	 selection	 to	 depend	 on	 the	 three	 lagged	 outcomes	
�i = logit

�
�0 + �1

∑3
�=1 Yit−�

�
,	where	�0 = log 0.04	and	�1 = − 2.

Estimation.	We	consider	several	estimators	for	the	average	post-	treatment	effect	ATT.	Figure	7	
shows	 four:	 (1)	 A	 difference-	in-	differences	 estimator	 following	 Equation	 (9)	 with	 uniform	
weights,	(2)	the	partially	pooled	SCM	estimator,	as	we	vary	ν	between	0	and	1,	(3)	partially	pooled	
SCM	with	an	intercept,	again	varying	ν	and	(4)	directly	estimating	the	factor	model.	Solid	points	
indicate	the	heuristic	choice	of	�̂ 	above.	The	vertical	axis	of	each	panel	shows	the	mean	absolute	
deviation	(MAD)	for	the	ATT,	�

[|||ATT − ÂTT
|||
]
,	while	the	horizontal	axis	shows	the	average	of	

the	individual	post-	treatment	effect	estimates,	�
�
1

J

∑J
j=1 �� j − �̂ j�

�
.	Appendix	Figures	B.1	and	B.2	

show	the	analogous	results	for	the	bias	and	RMSE.
There	are	several	key	takeaways	from	Figure	7.	First,	under	each	data	generating	process	there	

is	a	trade-	off	between	estimating	the	ATT	and	the	individual	effects,	with	ν = 1	at	the	top	left	of	
the	‘MAD	frontier’	and	ν = 0	at	the	bottom	right.	Partially	pooled	SCM	significantly	reduces	the	
bias	for	the	overall	ATT	relative	to	separate	SCM,	and	a	small	amount	of	pooling	also	leads	to	
slightly	better	individual	ATT	estimates.	The	gains	to	pooling,	however,	diminish	for	ν	close	to	1,	
with	the	fully	pooled	SCM	yielding	poor	individual	ATT	estimates	under	all	three	models.	Under	
a	two-	way	fixed	effects	model	there	is	no	penalty	to	pooling	in	terms	of	MAD	for	the	overall	ATT.	
This	comports	with	Theorem	2,	which	shows	that	targeting	the	pooled	pre-	treatment	fit	is	suffi-
cient	under	a	two-	way	fixed	effects	model.	However,	under	the	factor	model	and	AR	process	the	
fully	pooled	estimator	leads	to	worse	MAD	for	the	overall	ATT	estimates	than	partially	pooled	
SCM.	Second,	when	mis-	specified,	the	DiD	estimator	does	not	do	particularly	well	at	controlling	
the	MAD	for	either	overall	ATT	or	the	unit-	level	estimates.	Third,	the	intercept-	shifted	estimator	
dominates	either	of	the	alternatives	in	terms	of	both	overall	and	unit-	level	estimates.	Here	again	
there	are	gains	to	partially	pooling	SCM,	albeit	with	the	possibility	for	a	large	amount	of	error	
from	over-	pooling.	Fourth,	our	heuristic	choices	of	ν	perform	reasonably	well	at	selecting	a	point	
close	to	the	value	that	minimizes	the	MAD	for	the	ATT,	while	also	reducing	the	MAD	for	the	

F I G U R E  7 	 Monte	Carlo	estimates	of	the	MAD	for	the	overall	ATT	vs	the	MAD	for	the	individual	ATT	
estimates.	The	lines	trace	out	values	for	ν ∈ [0, 1],	the	solid	points	are	the	average	value	using	the	heuristic	�̂ .		
In	the	two-	way	fixed	effects	and	factor	model	simulations,	the	estimated	factor	model	is	the	oracle	estimator.	
Among	the	alternatives,	the	intercept-	shifted	partially	pooled	SCM	has	lowest	MAD	for	both	the	overall	ATT	
and	the	individual	ATT	estimates	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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individual	estimates.	Finally,	the	partially	pooled	SCM	estimator	with	an	intercept	shift	performs	
as	well	as	or	better	than	fitting	the	factor	model	directly.

Inference.	We	 conclude	 by	 examining	 the	 finite-	sample	 coverage	 of	 approximate	 95%	 confi-
dence	intervals	from	the	wild	bootstrap.	Figure	8	shows	the	coverage	of	approximate	confidence	
intervals	for	partially	pooled	SCM	with	an	intercept	shift,	using	the	wild	bootstrap	to	construct	
the	intervals.	Under	the	two-	way	fixed	effects	model,	in	which	there	is	no	bias	from	inexact	fit,	
the	wild	bootstrap	has	close	to	95%	coverage.	Under	both	the	linear	factor	model	and	the	autore-
gressive	model,	however,	the	wild	bootstrap	is	somewhat	conservative.8	Overall,	the	wild	boot-
strap	appears	to	be	a	reasonable,	if	conservative,	choice.

7 |  IMPACTS OF MANDATORY TEACHER COLLECTIVE 
BARGAINING LAWS

We	now	return	to	measuring	the	impact	of	mandatory	teacher	collective	bargaining.	The	left	of	
Figure	9a	shows	the	placebo	estimates	from	Equation	(9),	where	k < 0.9	We	see	that	along	with	
the	good	unit-	specific	fits	shown	in	Figure	5b	and	the	good	covariate	balance	shown	in	Figure	6,	
the	pooled	synthetic	control	estimate	is	near	zero	for	k < 0.	The	right	side	of	the	figure	shows	the	
estimated	impact	on	per-	pupil	current	expenditures,	with	approximate	95%	confidence	intervals	
computed	via	the	wild	bootstrap.

Consistent	with	Paglayan	(2019),	we	find	weakly	negative	effects	of	mandatory	teacher	col-
lective	bargaining	laws	on	student	expenditures.	Pooled	across	the	11	years	after	treatment	adop-
tion,	the	overall	estimate	is	ÂTT = − 0.03,	or	a	3%	decrease	in	per-	pupil	expenditures,	with	an	
approximate	95%	confidence	interval	of	[−0.06, +0.005].	In	Appendix	Figure	B.7	we	show	the	

	8Appendix	Figure	B.3	shows	the	analogous	results	for	partially	pooled	SCM	without	including	an	intercept.	In	this	case,	
the	wild	bootstrap	is	extremely	conservative.

	9These	placebo	checks	differ	from	those	typically	performed	in	traditional	event	studies,	which	test	for	the	parallel	
trends	assumption	by	comparing	pre-	treatment	outcomes	between	treated	and	control	units.	These	tests	generally	have	
low	power,	however;	see,	for	example,	Roth	(2018);	Bilinski	and	Hatfield	(2018);	Kahn-	Lang	and	Lang	(2019).	In	
contrast,	the	intercept-	shifted	estimator	uses	pre-	treatment	outcomes	to	select	donor	units	that	best	balance	the	treated	
units,	in	effect	optimizing	for	the	placebo	test.	It	is	still	possible	to	inspect	pre-	treatment	fit,	as	in	standard	SCM,	but	
this	is	best	seen	as	an	assessment	of	the	quality	of	the	match	rather	than	as	a	formal	placebo	test.

F I G U R E  8 	 Monte	Carlo	estimates	of	the	coverage	of	approximate	95%	confidence	intervals	k = 0, …, 9	
periods	after	treatment.	The	solid	line	indicates	the	coverage	for	the	overall	ATT	estimate	averaged	across	all	
post-	treatment	periods	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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average	post-	treatment	effect	for	each	state	and	the	unit-	level	fits.	For	those	states	with	good	pre-	
treatment	fit,	we	find	small	positive	and	negative	effects,	while	we	estimate	larger	negative	effects	
for	those	with	worse	fit.	These	estimates	are	in	stark	contrast	to	the	results	from	Hoxby	(1996),	
who	argues	for	a	12%	positive	effect,	although	she	gives	a	range	of	estimates.	One	possible	expla-
nation	for	this	is	that	school	districts	are	able	to	divert	funds	from	other	purposes	to	fund	higher	
teacher	salaries	with	minimal	net	effect	on	total	expenditures.	In	Appendix	Figure	B.7	we	show	
estimates	of	the	effect	on	teacher	salaries,	finding	evidence	against	a	positive	effect.

F I G U R E  9 	 Estimates	of	the	ATT	on	per-	pupil	current	expenditures	(log,	2010	$)	and	placebo	estimates	
re-	indexing	treatment	time	to	2	and	4	years	before	the	true	treatment	time.	The	placebo	effects	are	very	
close	to	zero	and	are	indistinguishable	from	zero	at	this	level	of	precision	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

(a)

(b)
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We	can	assess	the	strength	of	evidence	by	conducting	robustness	and	placebo	checks.	First,	
following	Abadie	et al.	(2015),	we	begin	by	assessing	out-	of-	sample	validity	via	in time placebo 
checks.	These	checks	hold	out	some	pre-	treatment	time	periods	by	re-	indexing	treatment	time	to	
be	earlier	(i.e.	setting	T �

j
= Tj − x	for	some	x),	then	estimate	placebo	effects	for	the	held-	out	pre-	

intervention	time	periods.	Figure	9b	shows	the	placebo	estimates	for	the	intercept-	shifted	par-
tially	pooled	SCM	estimator	with	covariates	using	a	placebo	treatment	time	two	and	four	periods	

F I G U R E  1 0 	 (a)	ÂTT	and	approximate	95%	confidence	intervals	as	ν	varies	between	0	and	1,	�̂ 	highlighted.	
(b)	Estimates	are	not	especially	sensitivity	to	dropping	an	increasing	number	of	units	(ranked	by	pre-	treatment	
imbalance),	although	the	uncertainty	intervals	are	wider	with	fewer	units	in	the	analysis	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]

(a)

(b)
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before	the	true	treatment	time.	Both	estimators	achieve	excellent	pre-	treatment	fit	and	estimate	
placebo	effects	that	are	indistinguishable	from	zero.

Another	 important	check	 that	we	recommend	 in	practice	 is	 to	gauge	 the	sensitivity	of	 the	
ATT	estimates	to	the	particular	choice	of	pooling	parameter	ν.	Figure	10a	shows	the	overall	ATT	
estimates	varying	ν	from	separate	SCM	ν = 0	to	pooled	SCM	ν = 1.	No	choice	of	ν	substantively	
changes	the	conclusions,	and	each	rules	out	large	positive	effects.	Finally,	we	consider	the	re-
sult	of	trimming	states	with	poor	pre-	treatment	fit,	following	common	practice	in	the	matching	
and	SCM	literatures.	Figure	10b	shows	the	overall	ATT	estimates	when	removing	an	increasing	
number	of	treated	units	with	poor	fits,	in	order	of	decreasing	unit-	level	fit.	Overall,	omitting	the	
worst-	fit	states	decreases	the	magnitude	of	the	estimated	effect,	and	increases	the	variability	of	
the	estimate.	However,	all	estimates	still	rule	out	large	positive	effects.

An	important	feature	of	SCM-	based	methods	over	model-	based	methods	is	that	we	can	di-
rectly	inspect	the	weights,	and	that	these	weights	are	non-	negative	and	sum	to	one.	Appendix	
Figures	B.8	and	B.9	show	the	state-	specific	weights	over	donor	states	for	each	treated	unit	for	
partially	pooled	SCM	without	an	intercept	and	with	both	an	intercept	and	auxiliary	covariates	
respectively.	Without	the	intercept,	both	Illinois	and	Wyoming	are	consistently	important	donor	
states.	Both	states	had	relatively	high	levels	of	per-	pupil	expenditures	throughout	the	study	pe-
riod	and	several	synthetic	controls	place	nearly	all	of	the	weight	on	these	two	states	in	order	to	
match	the	level.	However,	after	removing	pre-	treatment	averages	via	an	intercept,	the	weights	
are	much	more	evenly	distributed	across	the	donor	pool,	suggesting	that	estimates	are	not	overly	
reliant	on	a	single	control	unit.

8 |  DISCUSSION

In	this	paper,	we	develop	a	new	framework	for	estimating	the	 impact	of	a	 treatment	adopted	
gradually	by	units	over	time.	In	our	motivating	example,	33	states	have	enacted	laws	mandating	
school	districts	to	bargain	with	teachers’	unions	(Paglayan,	2019),	and	we	seek	to	estimate	the	
effects	of	these	laws	on	educational	expenditures.	To	do	so,	we	adapt	SCM	to	the	staggered	adop-
tion	setting.	We	argue	that	current	practice	of	estimating	separate	SCM	weights	for	each	treated	
unit	is	unlikely	to	yield	good	results,	but	also	that	fully	pooled	SCM	may	over-	correct;	our	pre-
ferred	approach,	partially	pooled	SCM,	finds	weights	that	balance	both	state-	specific	and	overall	
pre-	treatment	fit.	We	then	extend	this	basic	approach	to	incorporate	an	intercept	shift	as	well	as	
auxiliary	covariates.	We	apply	this	approach	to	the	teacher	bargaining	example	and,	consistent	
with	recent	analyses,	find	weakly	negative	estimates	on	student	expenditures.

We	briefly	note	some	directions	for	future	work.	First,	we	could	extend	these	ideas	to	other	
settings	with	multiple	treated	units,	such	as	where	treatment	can	‘shut	off’	for	some	units	(Imai	
&	Kim,	2021),	or	where	all	units	are	eventually	treated	(Athey	&	Imbens,	2021).	This	would	likely	
require	additional	assumptions.	We	could	similarly	incorporate	other	structure	from	our	appli-
cation.	For	example,	in	staggered	adoption	settings	where	multiple	units	adopt	treatment	at	the	
same	time,	we	could	add	a	layer	in	the	hierarchy	and	more	closely	pool	units	treated	at	the	same	
time	while	still	partially	pooling	different	treatment	cohorts.	See	Appendix	A.2.

Second,	many	SCM	analyses	explore	multiple	outcomes.	As	in	other	SCM	studies,	we	treat	
each	outcome	separately,	choosing	different	synthetic	control	weights	for	each.	In	many	settings,	
however,	lagged	values	from	one	outcome	may	predict	future	values	of	another,	suggesting	that	
balancing	multiple	outcome	variables	would	be	useful.	This	seems	especially	important	in	set-
tings	like	ours	with	relatively	few	units.
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Finally,	we	could	adapt	recent	proposals	for	bias	correction	and	other	‘doubly	robust’	estima-
tors	to	this	setting,	which	will	be	important	for	both	estimation	and	inference	(Abadie	&	L’Hour,	
2021;	Arkhangelsky	et al.,	2019;	Ben-	Michael	et al.,	2021).	Existing	approaches	have	largely	been	
limited	to	the	case	with	a	single	treated	unit	or,	if	multiple	units	are	treated,	to	a	single	adop-
tion	 time.	More	complex	models	are	possible	and	may	be	desirable	 in	 the	staggered	adoption	
setting.	 For	 example,	 Fesler	 and	 Pender	 (2019)	 apply	 the	 Ridge	 Augmented	 SCM	 proposal	 in	
Ben-	Michael	et al.	(2021)	to	a	staggered	adoption	setting,	modelling	each	treated	unit	separately.	
Partial	pooling	may	be	helpful	here.	In	another	direction,	we	might	consider	an	outcome	model	
that	incorporates	the	time	weights	used	in	Arkhangelsky	et al.	(2019).	We	anticipate	that,	unlike	
in	the	simple	case	with	unit	fixed	effects,	these	augmented	approaches	likely	require	more	elab-
orate	shrinkage	estimation,	such	as	via	matrix	penalties.
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