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A Additional theoretical results

A.1 Further discussion of inference

We now continue the discussion of inference from the main text in Section 5.3. Our goal here
is to discuss the conditions under which the proposed estimator is asymptotically Normal. Since
asymptotic theory is not the focus of our paper, we leave for future work a rigorous derivation of
the validity of the wild bootstrap procedure, in particular, adapting the proof of the main theorem
in Otsu and Rai (2017) and showing that the additional conditions in that proof are satisfied with
our proposed procedure.

In order to discuss inferential procedures for partially pooled SCM with an intercept shift, we
will consider a generalization of parallel trends. For each time period g, we assume that the expected
differences between post-g and pre-g outcomes do not depend on whether unit i is treated at time
g, conditional on auxiliary covariates Xi and the vector of pre-g residuals Ẏ g

i ≡ (Yig−L, . . . , Yig−1)−
1
L

∑L
`=1 Yig−`.

Assumption A.1 (Conditional parallel trends). With L < T1, for all k ≥ 0 and ` ≥ 1

E[Yig+k(∞)− Yig−`(∞) | Ti = g, Ẏ g
i , Xi] = E[Yig+k(∞)− Yig−`(∞) | Ẏ g

i , Xi] ≡ mgk`(Ẏ
g
i , Xi)

Assumption A.1 is a generalization of the conditional parallel trends assumption in Abadie
(2005) to the staggered adoption setting, including the pre-treatment residuals Ẏ g

i . It loosens the
usual parallel trends assumption by allowing trends to differ depending on the auxiliary covariates
and the deviation of lagged outcomes from their baseline value. Thus, we are essentially conditioning
on pre-treatment “dynamics,” rather than pre-treatment levels. For instance, even if two states
have very different levels of student expenditures, under conditional parallel trends we can compare
them so long as they have similar pre-treatment trends and shocks. See Hazlett and Xu (2018) and
Callaway and Sant’Anna (2020) for related conditional parallel trends assumptions. In addition,
we will assume that the conditional expectation of the post- and pre-g differences is linear.

Assumption A.2.
mgk`(Ẏ

g
i , Xi) = βYgk` · Ẏ

g
i + βXgk` ·Xi

We make two further assumptions that allow for asymptotic normality as the number of units
grows while the number of lags L stays fixed. First, we assume that the synthetic controls have
perfect fit when averaged within time-cohorts; second, we assume that the sum of the squared
weights is bounded.
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Assumption A.3 (Exact balance within treatment cohorts and bounded weights). Assume that

1

ng

∑
Ti=g

Ẏ g
i =

1

ng

N∑
i=1

∑
Tj=g

γ̂ij Ẏ
g
i and

1

ng

∑
Ti=g

Xi =
1

ng

N∑
i=1

∑
Tj=g

γ̂ijXi,

for all g = T1, . . . , TJ . Furthermore, ‖γ̂j‖2 ≤ C√
N0

for all j = 1, . . . , J and some constant C.

Note that by transforming from the penalized optimization problem (7) to the constrained form,
there is a choice of λ that guarantees that the constraint on the weights are satisfied, if there
exists a feasible solution. Finally, we make two assumptions on the noise terms εigk ≡ Yig+k(∞)−
1
L

∑L
`=1 Yig−`(∞)− 1

L

∑L
`=1mk`(g, Ẏ

g
i , Xi). First, we assume that they are independent across units;

second, we assume that they are sufficiently regular so that their average satisfies a central limit
theorem.

Assumption A.4. εigk are independent across units i = 1, . . . , N , and for some δ > 0, the 2 + δth

moment exists, E
[
|εigk|2+δ

]
<∞, and furthermore

lim
N→∞

∑
Ti 6=∞ E

[
|εiTik|

2+δ
]

(∑
Ti 6=∞ E

[
ε2
iTik

])1+ δ
2

= 0.

Under these assumptions, the estimate of the effect k periods after treatment, ÂTTk, will be
asymptotically normal as N grows with a fixed number of lags L, and where the number of control
units N0 grows more quickly than the number of treated units J .

Theorem A.1. Assume that J
N0
→ 0 as both J,N0 →∞, with L fixed. Under Assumptions A.1,

A.2, A.3, and A.4
√
J
(

ÂTTk −ATT
)

=
1√
J

∑
Ti 6=∞

εiTj+k + op(1).

Furthermore, ÂTTk−ATT
1
J

∑
Ti 6=∞

E
[
ε2iTik

] d→ N(0, 1).

Jackknife. Finally, we briefly discuss constructing confidence intervals via the leave-one-unit-out
jackknife approach, which proceeds as follows. Fix hyperparameter values ν, ξ, and λ; for each unit
i = 1, . . . , N : drop unit i and re-fit the intercepts and the weights via Equation (11) to obtain α̂(−i),

Γ̂(−i), and the synthetic control estimates Ŷ
(−i)
jTj+k

. Then compute the leave-one-unit-out estimate

ÂTT
(−i)
k = 1

J(−i)

∑J
j=1 1j 6=i

{
YjTj+k − Ŷ

(−i)
jTj+k

}
, where J (−i) ≡ J − 1Ti<∞. The jackknife estimate

of the standard error is then:

V̂k =
n− 1

n

n∑
i=1

ÂTT
(−i)
k − 1

n

n∑
j=1

ÂTT
(−j)
k

2

, (A.1)

with an approximate 95% confidence interval ÂTTk±1.96

√
V̂k. We include Monte Carlo estimates

of the coverage under our simulation setup in Figures B.3 and B.4.

2



A.2 Fully pooling within time cohorts

As we discuss in Section 3, if all units are treated at the same time, T1 = · · · = TJ , our error
bounds depend only on the pooled imbalance and do not include the unit-level imbalance. Thus, if
units are treated in cohorts (i.e., several units treated at the same time), then the bounds suggest
modeling variation in pre-treatment outcomes between treatment cohorts separately from the pooled
average. This leads to a natural modification of our partially pooled estimator: We can fully pool
within cohorts by applying the estimator to treatment cohorts rather than individual treated units,
optimizing a weighted average of the overall imbalance and the average cohort-level imbalance.
Concretely, let G be the number of distinct treatment times, which we denote T (g), g = 1, . . . , G,
and let ng =

∑N
i=1 1{Ti = T (g)} be the number of units treated in time T (g). We can modify the

optimization problem to find G sets of weights, where the individual objective for treatment cohort
g is

qg(γg)
cohort =

√√√√ 1

Lg

Lg∑
`=1

(
N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

)2

.

As before, we will restrict the set of donor units for cohort g to those not yet treated K periods
after T (g), D(g) ≡ {i : Ti > T (g) + K}, and we will restrict the weights so that γg ∈ ∆scm(g)
satisfies γig ≥ 0 for all i,

∑
i γig = ng, and γig = 0 if i 6∈ D(g). We then define the relevant separate

and pooled balance measures:

qsep cohort(Γ) =

√√√√√ 1

G

G∑
g=1

1

Lg

Lg∑
`=1

(
N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

)2

,

and

qpool cohort(Γ) =

√√√√√ 1

maxg Lg

maxg Lg∑
`=1

 1

G

G∑
g=1

N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

2

.

We can then use these cohort-level measures of imbalance in the partially pooled SCM optimization
problem (6), and similarly can include an intercept as in (7). More generally, if we do not want to
fully pool within clusters, we can include three (or more) imbalance terms in our objective function
to capture unit-level, pooled, and intermediate cluster-level imbalance.

A.3 Partially pooled SCM: Dual shrinkage

We now inspect the Lagrangian dual problem to the partially pooled SCM problem in Equation (6),
showing that the optimization problem partially pools a set of unit-specific dual variables toward
global dual variables. We focus on balancing the first Lj = L ≤ T1 − 1 lagged outcomes, which are
observed for each treated unit.

For each treated unit j, the sum-to-one constraint induces a Lagrange multiplier αj ∈ R, and the
state-level balance measure induces a set of Lagrange multipliers βj ∈ RL, with elements β`j . We
combine these dual parameters into a vector α = [α1, . . . , αJ ] ∈ RJ and a matrix β = [β1, . . . , βJ ] ∈
RL×J . In addition to the J sets of Lagrange multipliers — one for each treated unit — the pooled
balance measure in the partially pooled SCM problem Equation (6) induces a set of global Lagrange
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multipliers µβ ∈ RL. As we see in the following proposition, in the dual problem the parameters
β1, . . . , βJ are regularized toward this set of pooled Lagrange multipliers, µβ.

Proposition A.1. The Lagrangian dual to Equation (6) with un-normalized objevtices qsep and
qpool with Lj = L < T1 and λ > 0 is:

min
α,µβ ,β

L(α, β) +
λL

2

 1

(1− ν)

J∑
j=1

‖βj − µβ‖22 +
J

ν
‖µβ‖22

 , (A.2)

where the dual objective function is

L(α, β) ≡ 1

J

J∑
j=1

∑
i∈Dj

[
αj +

L∑
`=1

β`jYiTj−`

]2

+

−

(
αj +

L∑
`=1

β`jYjT1−`

) , (A.3)

where [x]+ = max{0, x}. For treated unit j, the synthetic control weight on unit i is γ̂ij =[
α̂j +

∑L
`=1 β̂`jYjTj−`

]
+

.

Proposition A.1 highlights that the estimator partially pools the individual synthetic controls to
the pooled synthetic control in the dual parameter space, with ν controlling the level of pooling.
When ν = 0 in the separate SCM problem, the parameters β1, . . . βJ are shrunk towards zero rather
than a set of global parameters. By contrast, when ν = 1, β1, . . . , βJ are constrained to be equal
to µβ, fitting a single pooled synthetic control in the dual parameter space. By choosing ν ∈ (0, 1),
we move continuously between the two extremes of J separate Lagrangian dual problems and a
single dual problem, regularizing the individual βjs toward the pooled µβ, allowing for some limited
differences between the J dual parameters.
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B Additional figures

B.1 Additional simulation results
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Two-way Fixed Effects Factor Model Autoregressive Model
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Figure B.1: Monte Carlo estimates of the bias for the overall ATT vs the MAD for the individual
ATT estimates.
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Figure B.2: Monte Carlo estimates of the RMSE for the overall ATT vs the RMSE of the individual
ATT estimates.
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Two-way Fixed Effects Factor Model Autoregressive Model
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Figure B.3: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM with an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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Figure B.4: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM without an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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B.2 Additional results for the mandatory collective bargaining application
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Figure B.5: Per-pupil expenditures for US states over the study period.
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Figure B.6: Average post-treatment effect estimates 1
K+1

∑K
k=0 τ̂jk for the treated states, plotted

against the root-mean square pre-treatment fit qj(γ̂j).
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Figure B.7: Partially-pooled SCM with intercept shifts and covariates (ν̂ = 0.26), estimates of the
impact of mandatory collective bargaining laws on average teacher salary (log, 2010 $).
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Figure B.8: Partially pooled SCM weights. White cells indicate zero weight, black cells indicate a
weight of 1.
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Figure B.9: Partially pooled SCM weights when including an intercept. White cells indicate zero
weight, black cells indicate a weight of 1.
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C Proofs

C.1 Error bounds

Proof of Theorem 1. Defining ξt = ρt − ρ̄, the error is

τ̂j0 − τj0 =
L∑
`=1

(ρ̄+ ξTj )

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


So by the triangle and Cauchy-Schwarz inequalities,

|τ̂j0 − τj0| ≤ ‖ρ̄+ ξTj‖2

√√√√√ L∑
`=1

YjTj−` −∑
i∈Dj

γijYiTj−`

2

+

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γijεiTj

∣∣∣∣∣∣
Since γ̂j is fit on pre-Tj outcomes, the weights are independent of εTj , and so the second term

above is sub-Gaussian with scale parameter σ
√

1 + ‖γ̂j‖22 ≤ σ(1 + ‖γ̂j‖2). This implies that

P

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γ̂ijεiTj

∣∣∣∣∣∣ ≥ δσ (1 + ‖γ̂j‖2)

 ≤ 2 exp

(
−δ

2

2

)

For the bound on ÂTT0, notice that

ÂTT0 −ATT0 =
1

J

J∑
j=1

τ̂j0 − τj0 =
1

J

J∑
j=1

 L∑
`=1

(ρ̄` + ξTj`)

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


=

L∑
`=1

ρ̄`
1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


+

1

J

J∑
j=1

L∑
`=1

ξTj`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


+

1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj


(A.4)

By Cauchy-Schwarz the absolute value of the first term is∣∣∣∣∣∣
L∑
`=1

ρ̄`
1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

∣∣∣∣∣∣ ≤ ‖ρ̄‖2
√√√√√ L∑

`=1

 1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

.
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Similarly, the absolute value of the second term is∣∣∣∣∣∣ 1J
J∑
j=1

L∑
`=1

ξTj`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

∣∣∣∣∣∣ ≤ 1

J

J∑
j=1

‖ξTj‖2

√√√√√ L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

≤ Sρ

√√√√√ 1

J

J∑
j=1

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

Finally, notice that 1
J

∑J
j=1 εjTj is the average of J independent sub-Gaussian random variables and

so is itself sub-Gaussian with scale parameter σ√
J

. However, 1
J

∑J
j=1

∑
i∈Dj γ̂ijεiTj is the weighted

average of sub-Gaussian variables that are independent over i but not necessarily independent over
j, and so the weighted average is sub-Gaussian with scale parameter σ√

J
‖Γ‖F . The two averages

are independent of each other, so

P

 1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj

 ≥ δσ√
J

(
1 + ‖Γ̂‖F

) ≤ 2 exp

(
−δ

2

2

)

Putting together the pieces completes the proof.

Proof of Theorem 2. Following Abadie et al. (2010), we can re-write φi in terms of the lagged
outcomes as

φi = (Ω′jΩj)
−1

L∑
`=1

µTj−`(YiTj−` − εiTj−`)

=
1√
L

L∑
`=1

P
(j)
` (YiTj−` − εiTj−`)

(A.5)

where Ωj ∈ RL×F is the matrix of factors from time t = Tj−L, . . . , Tj−1, 1√
L
P

(j)
` = (Ω′jΩj)

−1µTj−` ∈

RF , and 1√
L
P (j) = 1√

L
[P

(j)
1 , . . . , P

(j)
J ] ∈ RF×L. Using Equation (A.5), we can write the error for

the ATT as

ÂTTk −ATTk =
1

J

J∑
j=1

τ̂jk − τjk =
1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


− 1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

εjTj−` −∑
i∈Dj

γ̂ijεiTj−`


+

1

J

J∑
j=1

εjTj+k −∑
i∈Dj

γ̂ijεiTj+k

 .

(A.6)

From the proof of Theorem 1, we can bound the final term in Equation (A.6). We now bound
the first two terms. First, as in the proof of Theorem 1, we decompose the first term into a time
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constant, and a time varying component:

1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


︸ ︷︷ ︸

(∗)

=
1

J
√
L

L∑
`=1

µ̄k`

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`



+
1

J
√
L

J∑
j=1

L∑
`=1

ξ(Tj+k)`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

 ,

where µ̄k` ≡ 1
J

∑J
j=1 P

(j)′
` µTj+k, and ξ(Tj+k)` ≡ P

(j)′
` µTj+k − µ̄k`. Now by Cauchy-Schwarz, we get

that

|(∗)| ≤ ‖µ̄k‖2

√√√√√ 1

L

L∑
`=1

 1

J

J∑
j=1

YjTj−` −
∑
i∈Dj

γ̂ijYiTj−`

2

+
1

J

J∑
j=1

‖ξTj+k‖2

√√√√√ 1

L

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

≤ ‖µ̄k‖2

√√√√√ 1

L

L∑
`=1

 1

J

J∑
j=1

YjTj−` −
∑
i∈Dj

γ̂ijYiTj−`

2

+ Sk

√√√√√ 1

JL

J∑
j=1

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

We now turn to the second term in Equation (A.6). Since εit are independent sub-Gaussian

random variables and 1√
L
‖µ′Tj+kP

(j)‖2 ≤ M2F√
L

,

P

 1√
L

∣∣∣∣∣∣ 1J
J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
` εjTj−`

∣∣∣∣∣∣ ≥ δσM2F√
JL

 ≤ 2 exp

(
−δ

2

2

)
Next, since γ̂1, . . . , γ̂J ∈ ∆scm, 1

J

∑J
j=1 ‖γ̂j‖1 = 1, by Hölder’s inequality

∣∣∣∣∣∣ 1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

∑
i∈Dj

γ̂ijεiTj−`

∣∣∣∣∣∣ ≤ max
j∈{1,...,J},i∈Dj

∣∣∣∣∣ 1√
L

L∑
`=1

µ′Tj+kP
(j)
` εiTj−`

∣∣∣∣∣ ≤ 2
σM2F√

L

(√
logNJ + δ

)

where the final inequality holds with probability at least 1 − 2 exp
(
− δ2

2

)
by the standard tail

bound on the maximum of sub-Gaussian random variables. Putting together the pieces with a
union bound completes the proof.

C.2 Asymptotic normality

Proof of Theorem A.1. Define β̄Ygk = 1
L

∑L
`=1 β

Y
gk` and β̄Xgk = 1

L

∑L
`=1 β

X
gk`. Note that under linearity

in Assumption A.2,

Yig+k(∞)− 1

L

L∑
`=1

Yig−`(∞) = β̄Ygk · Ẏ
g
i + β̄Xgk ·Xi + εigk.
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So the estimation error for the treatment effect for unit j at time k is

τ̂jk − τjk = YjTj+k(∞)− 1

L

L∑
`=1

YiTj−`(∞)−
∑
i

γ̂ij

(
YiTj+k −

1

L

L∑
`=1

YiTj−`

)

= β̄YTjk ·

(
Ẏ
Tj
j −

∑
i

γ̂ij Ẏ
Tj
i

)
+ β̄XTjk ·

(
Xj −

∑
i

γ̂ijXi

)
+ εjTjk −

∑
i

γ̂ijεiTjk

Aggregating across treated units we see that

ÂTTk −ATT =
1

J

J∑
j=1

τ̂jk − τjk

=
1

J

TJ∑
g=1

ngβ̄
Y
gk ·

 1

ng

∑
Ti=g

Ẏ g
i −

1

ng

N∑
i=1

∑
Tj=g

γ̂ij Ẏ
g
i

+ ngβ̄
X
gk ·

 1

ng

∑
Ti=g

Xi −
1

ng

N∑
i=1

∑
Tj=g

γ̂ijXi


+

1

J

J∑
j=1

εjTjk −
∑
i

γ̂ijεiTjk,

where ng is the number of units treated at time g. Now from Assumption A.3, we have exact

balance within each cohort, so this reduces to ÂTTk −ATT = 1
J

∑j
j=1 εjTjk −

∑
i γ̂ijεiTjk. We now

show that the second term is op(J
−1/2). Denote σ2

max = maxigk Var(εigk). Since the noise terms
εi`k are independent across units i,

Var

 1

J

J∑
j=1

∑
i

εiTjkγ̂ij

 = E

Var

 1

J

J∑
j=1

∑
i

εiTjkγ̂ij | Γ

+ Var

E

 1

J

J∑
j=1

∑
i

εigkγ̂ij | Γ


= E

 1

J2

∑
i

Var

 J∑
j=1

εiTjkγ̂ij | Γ


≤ E

 1

J2
σ2

max

∑
j,j′

∑
i

γ̂ij γ̂ij′


≤ E

 1

J2

∑
i

σ2
max

∑
j,j′

‖γ̂j‖2‖γ̂j′‖2


≤ C2σ2

max

N0

By Chebyshev’s inequality, P
(∣∣∣ 1√

J

∑J
j=1

∑
i εiTjkγ̂ij

∣∣∣ ≥ δ) ≤ σ2
maxC

2J
δ2N0

. Now since J
N0
→ 0, this

implies that
√
J
(

ÂTTk −ATTk

)
= 1√

J

∑
Ti 6=∞ εiTik + op(1). Applying the Lyapunov central limit

theorem to the first term and Slutsky’s theorem shows asymptotic normality.
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C.3 Partial pooling of dual parameters

Lemma A.1. The Lagrangian dual to Equation (6) with ν = 0, λ > 0, and Lj = L < T1 is

min
α,β

1

J

J∑
j=1

∑
i∈Dj

[
αj +

L∑
`=1

β`jYiTj−`

]2

+

−

(
αj +

L∑
`=1

β`jYjT1−`

)
︸ ︷︷ ︸

L(α,β)

+

J∑
j=1

λL

2
‖βj‖22, (A.7)

The resulting donor weights are γ̂ij =
[
α̂j −

∑L
`=1 β̂`jYiTj−`

]
+

.

Proof of Lemma A.1. Notice that the separate synth problem separates into J optimization prob-
lems:

min
γ1,...,γJ∈∆scm

j

1

2
qsep(Γ) +

λ

2

J∑
j=1

N∑
i=1

γ2
ij

=
J∑
j=1

min
γj∈∆scm

j


 1

2JL

L∑
`=1

(
YjTj−` −

N∑
i=1

γijYiTj−`

)2
 +

λ

2

N∑
i=1

γ2
ij


(A.8)

Thus the Lagrangian dual objective is the sum of the Langrangian dual objectives of the individual
objectives in Equation (A.8). Inserting the dual objectives derived by Ben-Michael et al. (2021)
and scaling by 1

J yields the result.

Proof of Proposition A.1. We start be defining auxiliary variables, E0, E1, . . . , EJ ∈ RL where Ej` =

YjTj−` −
∑N

i=1 γijYiTj−` for j ≥ 1 and E0` =
∑

Tj>`

(
YjTj−` −

∑N
i=1 γijYiTj−`

)
. Additionally we

rescale by 1
λ . Then we can write the partially pooled SCM problem (6) as

min
γ1,...,γJ ,E0,...,EJ

ν

2J2Lλ

L∑
`=1

E2
0` +

1− ν
2Jλ

J∑
j=1

1

L
E2
j` +

J∑
j=1

N∑
i=1

1

2
γ2
ij

subject to Ej` = YjTj−` −
N∑
i=1

γijYiTj−`

E0` =
∑
Tj>`

(
YjTj−` −

N∑
i=1

γijYiTj−`

)
γj ∈ ∆scm

j

(A.9)

With Lagrange multipliers µβ, ζ1, . . . , ζJ ∈ RL and α1, . . . , αJ ∈ R, the Lagrangian to Equation
(A.9) is
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L(Γ, E0, . . . , EJ , α1, . . . , αJ , µβ, ζ1, . . . , ζJ) =

L∑
`=1

 ν

2LJ2λ
E2

0` − µβ`

 J∑
j=1

YjTj−` −
∑
i∈Dj

γijYiTj−`

− E0`µβ`


+

J∑
j=1

L∑
`=1

 1− ν
2JLλ

E2
j` − ζ`j

YjTj−` −∑
i∈Dj

γijYiTj−`

− ζ`jEj`


+
J∑
j=1

∑
i∈Dj

1

2
γ2
ij − αjγij − αj

Defining βj = µβ + ζj , the dual problem is:

− min
Γ,E0,E1,...,EJ

L(·) = −
J∑
j=1

∑
i∈Dj

min
γij

{
1

2
γ2
ij −

(
αj −

L∑
`=1

β`jYiTj−`

)
γij

}
+

J∑
j=1

αj +

L∑
`=1

β`jYjTj−`

−
L∑
`=1

min
Ej`

{
1− ν
2JLλ

E2
j` − Ej`(β`j − µβ`)

}

−
L∑
`=1

min
E0`

{ ν

2J2Lλ
E2

0` − E0`µβ`

}
From Lemma A.1, we see that the first term is L(α, β) and we have the same form for the

implied weights. The next two terms are the convex conjugates of a scaled L2 norm. Using the
computation that the convex conjugate of a

2‖x‖
2
2 is 1

2a‖x‖
2
2. We then scale the whole dual problem

by 1
J . Finally, the primal problem (6) is still convex and a primal feasible point exists, so by Slater’s

condition strong duality holds.
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