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Does Competition Among Public Schools Benefit Students and 
Taxpayers?  Comment 

 

1. Introduction 

Economically-minded observers have long argued that market discipline would create 

incentives for more efficient educational production (e.g. Friedman 1962; Brennan and Buchanan 

1980; Chubb and Moe 1990).  Although this argument is theoretically compelling, it is difficult to 

support empirically.  One important difficulty is that the claim is about general equilibrium dynamics 

of competition among providers, and cannot be tested with small-scale interventions like the school 

voucher programs studied by Rouse (1998), Krueger and Zhu (2003), and many others.  Although 

Chile and New Zealand have each adopted large-scale choice policies (Hsieh and Urquiola 2003; 

Fiske and Ladd 2000), there is as yet no large-scale, long-run choice implementation in the United 

States with which to study the effects of competition among schools. 

The most compelling domestic evidence on productivity effects comes from studies of 

“Tiebout choice,” the use of the residential location decision to choose among neighboring local 

monopoly providers.  In an influential paper in this Review, Hoxby (2000) argues that metropolitan 

housing markets with more fragmented school governance offer more choice to consumers, which 

produces greater competitive pressures on providers.  Measures of fragmentation, however, are 

potentially endogenous to school productivity.  There has been a great deal of consolidation of 

school districts in the United States since World War II, and the extent of consolidation in any 

particular area may have depended on the productivity of local schools.  Additionally, families with 

children may concentrate in desirable districts, implying that district enrollments themselves are 

endogenous.  Hoxby proposes variation in topography—which may have influenced optimal 

jurisdictional size before modern transportation technologies—as a source of exogenous variation.  
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Instrumenting a measure of Tiebout choice in a metropolitan area with the number of streams 

flowing through that area, she finds substantial positive effects of choice on student test scores and 

other academic outcomes.1 

This paper presents a re-analysis of this result, using to the extent possible the same data and 

specifications used by Hoxby.  The decision to revisit Hoxby’s analysis is motivated by two 

considerations.  First, it has been proposed that estimates of choice’s productivity effects are 

biased—most likely upward—by the use, as in Hoxby’s study, of a sample of students enrolled in 

public schools (Hsieh and Urquiola 2003).  Second, recent estimates of specifications similar to 

Hoxby’s on alternative data sets have come to substantively different conclusions (Rothstein 2003).  

It is thus important to understand whether Hoxby’s results are sensitive to the exact sample and 

specification used. 

With the restricted-access National Educational Longitudinal Survey (NELS) data that 

Hoxby uses in her preferred specifications, and following her description of her data construction, I 

am unable to precisely replicate Hoxby’s sample.  When I estimate a specification similar to hers—I 

have access to only one of her two “streams” instruments, though it is by far the strongest in her 

first stage—on my replication sample, I obtain quite different results.  My point estimates indicate a 

smaller, insignificant effect of choice on students’ test scores.  Moreover, when I use techniques that 

are robust to the data’s likely clustered error structure, I estimate standard errors that are 

substantially larger than are Hoxby’s, enough so that even her point estimates are indistinguishable 

from zero.   

After presenting the replication estimates, I consider the impact on the estimated choice 

effect of small alterations to the sample and specification.  I propose a new and substantially more 

                                                 
1 Belfield and Levin (2002) review other studies of the effect of competition on student outcomes and conclude—based, 
in part, on the Hoxby result—that the evidence supports the claim of positive effects. 
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powerful instrument—capturing the same initial conditions proxied by the streams variables—for 

the Tiebout choice measure; I explore two techniques for ridding estimates of potential bias from 

selection into the private sector; I present several estimates of the sampling variance of the choice 

coefficient; and I extend the analysis to a new data set with observations on over 300,000 SAT-

takers, drawn from nearly every high school in each sample metropolitan area, from the same cohort 

surveyed in the NELS.   

Estimates of models similar to Hoxby’s appear to be sensitive to the choice of instruments 

and to the exact sample definition.  Although standard errors are quite large, I find some (statistically 

insignificant) evidence supporting the contention that estimates from public school samples are 

biased upward by endogenous selection into private schools.  This suggests that analyses similar to 

Hoxby’s, even if robust and precise, are limited in their ability to estimate the effects of competition 

on school productivity.   

I conclude that Hoxby’s positive estimated effect of interdistrict competition on school 

output is not robust, and that a fair read of the NELS evidence does not support claims of a large or 

significant effect.  I do not find compelling evidence of endogeneity of the choice index to school 

quality, suggesting that the more precise negative (but insignificant) OLS estimate of choice’s effect 

on student outcomes should be preferred to less precise IV estimates.  An implementation of a 

specification similar to Hoxby’s in the SAT-taker data supports my conclusions from the NELS. 

Hoxby’s empirical specification, the data, and the sample construction are described in the 

next two sections.  Section 4 presents the first stage analysis, using as instruments for choice both a 

version of Hoxby’s “smaller streams” variable and an alternative variable characterizing available 

choice in the metropolitan area in 1942.  Basic replication estimates for the NELS test score models 

are in Section 5, as are estimates using the new instrument.  Section 6 explores the robustness of 

these estimates to slight modifications in the sample.  Section 7 presents two attempts to account for 
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the selection bias introduced by the use of a sample of public school students.  Section 8 considers 

the sampling variability of the OLS and IV coefficients, comparing Hoxby’s “random effects” 

standard error estimator (Moulton 1986) with less parametric estimators.  Section 9 describes the 

SAT data and presents estimates derived from them. 

2. Empirical specification 

Hoxby estimates models of the form  

(1) isdmisdmisdmisdmisdmdmdmmmmisdm XXXXct εγγγγβα ++++++= ,  

where tisdm is the test score of student i at school s in district d in metropolitan area m.  cm is the choice 

index, a size-adjusted count of the number of districts serving MA m.  Xm, Xdm, Xsdm, and Xisdm are 

control variables measured at the MA, district, school, and individual level, respectively.  (To the 

extent that the same measures appear at several levels, Xsdm is the average of Xisdm among all students 

at school s, and so on, although in practice this may not hold in the data because we observe only a 

sample of students at school s, and because data at different levels derive from different sources.)   

The error term in (1), εisdm, is not, in general, independent across observations in the same 

school, and we might write  

(2) isdmsdmdmmisdm eeee +++=ε  

to reflect error components that are common to all observations in the same MA, district, or school.   

Hoxby argues that the choice index may be endogenous to the quality of schools in the MA, 

i.e. that [ ] 0≠mmecE .  She instruments for cm with counts of larger and smaller streams in the 

metropolitan area, which I denote Zm. 
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Private enrollment and selection bias 

Hoxby’s NELS estimates, and most of the replication estimates considered here, derive from 

samples consisting only of students in public schools.  This can introduce selection biases.  In 

particular, even with an exogenous instrument ( [ ] 0| =misdm ZE ε ), the choice effect ivβ̂  is biased 

relative to choice’s effect on public school productivity if [ ]school publica   is|seE isdm  varies with 

choice.2  Hoxby (Table 5) presents evidence that high-choice markets have lower private enrollment 

rates, suggesting that choice does indeed affect the private school selection process.   

The direction and magnitude of the resulting bias depends on the residuals of the marginal 

students:  If the students brought into the public sector by expansions of choice have lower eisdm’s 

than do average public school students, β̂  is biased downward relative to the effect of choice on 

public school productivity.3  More plausibly, if those parents whose sectoral choice is influenced by 

the structure of local governance are above average in their involvement with their children’s 

education, marginal students are likely to have unusually high eisdm’s.  Hoxby seems to make this claim 

when she discusses the consequence of “families with a strong taste for education leav[ing] the 

public sector by shifting their children into private schools” (p. 1233).  In this case, the selection bias 

is positive, and the effect of choice on average public school scores is upward-biased relative to its 

effect on public school quality.4  I present estimates in Section 6 that attempt to gauge the 

                                                 
2 It may also be that edm+esdm varies between sectors, although since we are interested in the effect of choice on public 

school quality it may reasonably be imposed that [ ] 0school publica   is| =+ seeE sdmdm , thus loading any across-market 

variation in average public school quality onto em. 
3 The discussion assumes that (1) is correctly specified to absorb all peer effects in educational production in the 
coefficient vector γsdm, and that there are no interactions between, for example, individual- and school-level 
characteristics.  If (1) is not correctly specified, the biases in estimates of β are difficult to sign; these biases are 
exacerbated by the likely effects of choice on the stratification of students across schools (see, e.g., Rothstein 2003). 
4 From an earlier version of Hoxby’s paper:  “Since concentration appears to affect the sorting of students into private 
schools, potential for sample selection bias exists when we look only at the students who remain in public schools.  If, 
for instance, one of the effects of greater public school enrollment concentration is making abler students more likely to 
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importance of this form of bias, first by adding private school students to the sample and second by 

including an inverse Mills ratio derived from the metropolitan private enrollment rate as a control 

variable in (1). 

Sampling variance  

Because the error structure (2) is non-classical, traditional standard errors overstate the 

precision of estimates.  Under common assumptions, the true variance of the OLS estimator is  

(3) 
( ) ( ) ( )

( ) ( ) ( ) ( ) ;varvarvarvar

where ,'''ˆvar
11

mmdmdmsdmsdmNisdm

ols

QeQeQeIe

XXXXXXβ

+++≡Σ

Σ=
−−

 

IN is an N-by-N identity matrix; and  Qsdm, Qdm, and Qm are block-diagonal matrices consisting of 

blocks of ones within each school, district, and metropolitan area, respectively, and zeros elsewhere.  

(That is, 'WWQm = , where W is an N-by-M matrix of indicators for M metropolitan areas, and Qdm 

and Qsdm are defined similarly.)  Moulton (1986) proposes a feasible version of (3) that replaces the 

variance terms with estimates from the data.5  Moulton’s approach is easily extended to the IV 

estimator, with: 

(4) ( ) ( )[ ] ( ) ( ) ( )[ ] 111111
'''''''''''ˆvar

−−−−−−
Σ= XZZZZXXZZZZZZZZXXZZZZXivβ . 

Hoxby reports (p. 1219) using Moulton’s formula with metropolitan- and district-level error 

components, thus implicitly imposing ( ) 0var =sdme .  For most of the current analysis, I report both 

classical standard errors, which ignore the clustered structure of the data, and “clustered” standard 

errors, which are consistent in the presence of arbitrary within-MSA error covariances.  The 

                                                                                                                                                             
attend private schools, then public school students’ performance will be worse in concentrated SMSAs simply because 
selection into the public school student sample is negatively correlated with ability,” (Hoxby 1994b, p. 24).   
5 FGLS or maximum likelihood estimators would be more efficient than classical OLS or IV in the presence of 
correlated errors.  I follow Hoxby in considering only the classical OLS and IV estimators. 
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clustered standard errors are consistently larger than are those that Hoxby reports.  I explore this 

issue in Section 7, where I implement several versions of the Moulton standard error estimator but 

continue to estimate standard errors 10-50% larger than are Hoxby’s. 6 

3. Data 

Hoxby estimates versions of model (1) on two data sets, the NELS and the National 

Longitudinal Study of Youth (NLSY).  Her preferred estimates are from the NELS data, and I focus 

on these exclusively.  The NELS reports test scores in four subjects for each student from each of 

three waves, the first conducted when the students were in the 8th grade in 1988 and the others (for 

students remaining in school) in 1990 and 1992.  Hoxby presents estimates for reading scores from 

the 8th and 12th grade surveys, and for mathematics scores from the 10th grade survey.  Below, I 

present replication estimates for the 8th and 12th grade reading scores; unreported estimates for other 

scores are similar.  In my opinion, the 8th grade analyses are most compelling, both because this 

wave provides the largest samples and because non-random mobility and attrition may bias estimates 

from later waves.  Thus, when I consider modifications of the basic specification, I present estimates 

only for 8th grade reading scores.  

I attempt to define control variables similar to those used by Hoxby.  Like her, I draw 

district-level demographic characteristics from the School District Data Book (SDDB), a tabulation 

of data from the 1990 Census along school district boundaries.  However, where Hoxby appears to 

derive metropolitan area controls from the City and County Data Book (CCDB)—which reports 

                                                 
6 There are several available estimators of these variance components, and neither Moulton nor Hoxby specifies which is 
to be used.  My implementation estimates them from the contrast between individual and group-mean residual variances, 
extending Greene’s (2000, pp. 570-2) discussion of random effects in unbalanced panels to the multi-level hierarchy 
considered here.  Other consistent estimators might use the residual variance of within- and between-group versions of 
(1); the within-group empirical covariances; or an optimal minimum distance estimator using the entire empirical 

covariance matrix εε ′ˆˆ . 
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1980 demographic characteristics—I use instead the 1990 Census Summary Tape File (STF) 3A for 

this purpose.7  The metropolitan area definitions used at all points in my analysis are the Office of 

Management and Budget’s Metropolitan Statistical Area (MSA) definitions of June 30, 1990, used to 

characterize metropolitan areas in 1990 census data.  Each enumerated sub-area (PMSA) within the 

largest urban agglomerations is treated as a distinct MSA.  I construct Hoxby’s Herfindahl-based 

index of choice among school districts using enrollment data from the 1990 Common Core of Data 

(CCD), an annual census of public schools and districts.8 

A major difficulty in replicating Hoxby’s sample is the matching of NELS schools to MSAs, 

as the NELS offers several indirect indications of schools’ locations but no direct MSA code.  

Hoxby reports an 8th grade sample size of 10,790 students, from 211 MSAs, but does not report her 

geocoding algorithm.  I am unable to replicate her precise sample size.  I come closest with a 

relatively crude match, using district codes from the NELS to match public schools to the 1987-88 

CCD and relying on unaltered MSA codes from the CCD.  Doing so, and retaining all students with 

valid 8th grade reading scores and background variables at schools with valid MSA codes and 

complete SDDB records, produces a sample of 11,495 students in 196 MSAs.9  I use this as my base 

replication sample for analyses of 8th grade scores, and construct a 12th grade replication sample 

(5,865 students from 212 MSAs, as compared with Hoxby’s 6,119 students from 209 MSAs) by a 

similar algorithm. 
                                                 
7 I rely on the 1990 data because they seem to provide a more appropriate measure of demographic characteristics 
relevant to students who were in the 8th grade in 1988, and because the CCDB does not seem to tabulate ancestry, as 
would be needed to compute Hoxby’s “ethnic homogeneity index” control. 
8 In principle, one would want to differentiate between elementary, secondary, and unified school districts by 
constructing the choice index only over enrollment in a particular grade or range of grades (Urquiola 1999).  Hoxby does 
not discuss this issue, and I come closest to the indices reported in an earlier version of her paper (Hoxby 1994b) when I 
pool enrollment at all levels.  In practice, indices are sensitive to the precise definition in only a small number of 
MSAs—the correlation between the pooled index and that for smaller grade ranges is always greater than 0.97—and I 
obtain similar regression results with other definitions. 
9 A somewhat different MSA count can be obtained by using different MSA definitions—the 1983 vintage, e.g., or the 
alternative county-based NECMAs in New England—or different waves of the CCD.  I have not been able to obtain a 
count greater than 200 for the base year schools.   
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In Section 6, I present evidence on the sensitivity of the estimated choice effect to several 

refinements in the NELS geocoding.  First, some errors in the CCD MSA codes can be repaired by 

careful inspection, as when the CCD reports an obsolete code for 3 NELS 8th grade schools’ 

MSAs.10  Another 19 schools’ codes can be cleaned using CCD variables indicating the city, county, 

and state in which each district is located.  Finally, NELS variables characterizing the demographic 

composition of the school’s zip code provide an independent source of information—and the only 

source for private schools—about school locations.  The zip code variables are drawn from the 1990 

Census STF-3B tabulation, and matching to these data assigns nearly every NELS school to a unique 

zip code.  Most zip codes lie either entirely within a single MSA or entirely outside any MSA, so the 

zip code uniquely assigns the vast majority of schools in the NELS sample.  This leads to changes in 

3 public schools’ MSA codes, and provides MSA assignments for 174 private schools.   

4. First Stage 

Table 1 reports Hoxby’s “first stage” model (from her Table 2) and analogous models 

derived from the replication sample.11  Hoxby uses two instruments for the educational market 

structure, counts of “larger” and “smaller” streams flowing through each MA.  Only the latter, 

derived from the public-use Geographic Names Information System (GNIS), is available for the 

current analysis.12  In Hoxby’s model, reproduced in Column 1 of Table 1, the “smaller streams” 

                                                 
10 One example, from a non-NELS school, is the 827040 code, which indicated the St. Louis PMSA under the 1983-
vintage MSA definitions.  In 1990, this area is demoted to the St. Louis MSA, number 7040. 
11 The models in Table 1 are estimated on the universe of MSAs, and are therefore slightly different than the actual first 
stages to the IV regressions shown later, which are estimated on individual student observations from a subset of MSAs.  
Moreover, I follow Hoxby in including the metropolitan population shares below age 19 and above age 65 as regressors 
in Table 1, although they are not included in the IV models discussed below.  As in the student-level sample, my MSA-
level sample size differs from Hoxby’s.  One possible explanation is that Hoxby may be reporting the first stage from 
her NLSY sample, for which an earlier set of metropolitan area definitions would be appropriate. 
12 Hoxby has declined my request for use of her “larger streams” variable, which derives from her hand count from 
paper maps.  For her smaller streams variable, Hoxby uses the longitude and latitude of GNIS streams’ origin and 
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instrument accounts for a much larger share of the variance of the choice index than does the 

“larger streams” instrument.  Moreover, Hoxby writes that “one has more a priori confidence in the 

exogeneity of the smaller streams variable because smaller streams are too small to affect modern 

life” (p. 1230).  Thus, estimates that rely solely on the smaller streams instrument should be 

consistent and nearly as efficient as those from Hoxby’s two-instrument specification.  In any case, 

the replication estimate of the smaller streams coefficient in Column 2 is quite similar to the 

corresponding coefficient in Hoxby’s model.13   

Columns 3 and 4 report estimates using a new instrument.  To the extent that the initial 

conditions influencing current market structure are exogenous to current school quality, as must be 

assumed for validity of the streams instruments, historical measures of market structure at a far 

enough remove also provide exogenous variation in current choice.  I construct an estimate of the 

choice index in 1942, using counts of the independent school districts serving each county in the 

United States at that time (Gray 1944) and assuming that all districts were equally sized.14  This 

measure is a substantially more powerful predictor of 1990 choice than are the streams variables. 

5. Replication estimates 

Table 2 reports basic replication estimates of OLS and IV models for the NELS 12th grade 

reading scores.  Columns A and B report Hoxby’s reported coefficient and standard error on the 

district choice index, estimated by OLS and IV respectively.  The latter is the only model for which 

                                                                                                                                                             
destination to assign them to metropolitan areas; I use instead a GNIS variable that codes each county through which 
each stream flows. 
13 One major point of divergence is the population coefficient.  Hoxby reports that her population measure is scaled in 
thousands, so I multiply her coefficient by 10,000 to obtain the effect-per-ten million reported in Table 1.  It seems clear 
that Hoxby’s coefficient is actually scaled similarly to mine. 
14 This is the earliest year for which I have been able to obtain the county-specific district counts needed for 
construction of the index.  I have found one earlier observation, 1932, for the nation as a whole; nearly 85% of the post-
1932 decline in the number of districts occurred after 1942, and the rate of decline was considerable greater in the 1942-
1970 period than it was before.  There has been essentially no net consolidation since 1970. 
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Hoxby reports control variable coefficients, which are useful for gauging the accuracy of the 

replication.  Columns C and D report OLS and IV estimates of the same model using the replication 

sample and the smaller streams instrument.  The control variable coefficients in Column D are 

broadly similar to those reported by Hoxby.  I report both conventional standard errors, which do 

not account for potential serial correlation in the data, and, for the choice coefficient, standard 

errors adjusted for within-MSA clustering (in square brackets).  Note that the clustered standard 

errors in Columns C and D are substantially larger than are Hoxby’s reported error-components 

estimates in the corresponding models in Columns A and B.  I return to this issue in Section 7. 

The choice effect point estimates in columns C and D are notably smaller (closer to zero) 

than are Hoxby’s estimates from corresponding models.  The divergence of OLS estimates suggests 

that this is partially due to differences in the sample and in control variables rather than to the 

absence of the “larger streams” instrument in column D.  However, the difference between OLS 

and IV estimates is much smaller in the replication sample than in Hoxby’s results.   

Column E replaces the smaller streams instrument with the 1942 choice index, while 

Column F includes both instruments simultaneously.  In each case, I estimate a small, insignificant 

choice effect.  The final row of the table reports p values for tests of the exogeneity of the choice 

index, assuming independence of observations within MSAs.  Two of the three exogeneity tests are 

marginally significant, though unreported tests that allow for clustering do not approach 

significance.15   

                                                 
15 A traditional Hausman test is inappropriate when disturbances are non-independent, as in Hoxby’s random effects 
model.  The reported p-value is from an F-test on the first-stage fitted choice index coefficient in an augmented version 
of the OLS specification (Davidson and MacKinnon 1993), which remains appropriate when OLS is not efficient even 
under the null hypothesis.  Of course, the covariance matrices on which the reported test statistics are based derive from 
classical i.i.d. assumptions, but in Section 7 I consider alternative models.   
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Table 3 repeats the replication exercise for 8th grade reading scores.  I view this outcome 

variable as more reliable for several reasons.  First, the NELS sample offers considerably more 

observations in this wave.  Second, despite “freshenings” of the sample in later waves, it seems likely 

that non-random attrition in follow-up surveys—both from dropouts and from student mobility—

could bias the results.  Finally, while the NELS students are random samples of their 8th grade 

schools, they are not representative of the schools they attend in later years.  For these reasons, I use 

the 8th grade specifications as the basis for my investigations into robustness in the following 

sections.  As before, my replication estimates of the choice effect are small and uniformly 

insignificant; specifications that use the 1942 choice index as an instrument estimate choice effects 

very near to zero.  None of the three IV models rejects the OLS specification. 

I have also estimated models similar to those shown here for the remainder of the NELS’ 

fifteen test scores (reading, mathematics, history/geography, science, and a composite score in each 

of three grades).  Classical test statistics reject zero for only four of the 60 estimated coefficients, all 

from models for the history/geography score and half with negative point estimates.   

6. Sensitivity to sample specification 

The estimates presented thus far have used the CCD MSA codes as the sole source of 

information about NELS schools’ locations.  The sample changes slightly when erroneous MSA 

codes are repaired, by hand for obvious errors or by recourse to the other sources of geocoding 

information in the CCD and NELS.  Table 4 considers the sensitivity to these changes of the 

estimated choice effect on 8th grade reading scores.  Estimates from the base replication sample are 

presented in Row 2.  Row 1 presents estimates from the most restrictive possible sample, which 



13 

excludes 115 schools for which the CCD reports a PMSA code as if it were an MSA code.16  Row 3 

adds three schools to the sample for which the CCD MSA code is obsolete.  Row 4 uses the CCD 

school address to correct MSA codes for 19 schools.  Finally, Row 5 uses the NELS zip code 

variables as an independent source of information, repairing the assignments of 3 schools located in 

zip codes contained within MSAs not clearly indicated by the CCD address.  As the zip code 

variables are the only source of information about NELS private schools’ locations, this sample 

forms the baseline for the analysis of pooled public and private samples in the next section.  Choice 

effect estimates using the streams variable as the sole instrument are not particularly sensitive to 

these changes, but other estimates are notably more negative in the repaired samples than in the 

baseline sample.  

7. Private enrollment and selection bias 

As discussed earlier, estimates from samples of public school students can be biased relative 

to choice’s effect on public school productivity if choice has an effect on the selection of students 

into private schools.  Let [ ]mieEf isdmm  school; public attends |=  be the average eisdm of public school 

students in market m.  If private school students are positively (negatively) selected in market m, 

( ) 0><mf .  What is relevant for the current analysis, however, is not the level of fm but the extent 

to which it varies with choice ( mm cf ∂∂ ). 

In her Tables 5 and 6, Hoxby demonstrates a significant negative effect of choice on private 

enrollment rates.  She interprets this as evidence that “choice among public schools is a substitute 

for choice of private schools” (p. 1233), and suggests that students with involved parents and high 

family incomes may be more likely to exercise either type of choice.  If these characteristics are 

                                                 
16 The Denver PMSA, e.g., is reported as 2080, rather than the “correct” CMSA+PMSA code of 342080. 
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positively correlated with eisdm, choice would appear to pull high-eisdm students out of the private sector 

and into public schools, so 0>∂∂ mm cf .  When equation (1) is estimated on a sample of public 

school students, it is straightforward to show that [ ] β
c

f
ββplim

m

m >
∂

∂
+=ˆ  for any estimator β̂  

that is consistent in an unselected sample. 

There are two obvious ways to correct Hoxby’s specification for this selection bias.  First, 

one can estimate (1) on a sample that is representative of total public and private enrollment in each 

MSA. 17  Under fairly strong assumptions—including that private schools are not systematically 

better or worse than public schools; that competition has similar effects on the productivity of 

public and private schools; and that any peer effects are linear and additive, so that stratification 

does not have an independent effect on average scores—this produces an unbiased estimate of the 

choice effect on average school productivity (Hsieh and Urquiola 2003).  An alternative is a control 

function approach (Heckman 1979; Garen 1984; Card and Payne 2002), which attempts to absorb 

selection bias by controlling directly for the selection process as summarized by the MSA private 

enrollment rate.  If the selection bias is in the hypothesized direction, either strategy should produce 

a smaller (more negative) estimate of the choice effect. 

Table 5 explores the first strategy.  Including private schools in the sample requires 

modifying Hoxby’s specification somewhat, as district-level (SDDB) covariates are not available for 

these schools and they may only be matched to MSAs using the NELS zip code variables.  The first 

six rows of the table explore the impact of excluding the SDDB covariates, which are not needed for 

consistent estimation of β as long as the MSA-level aggregates of these variables are included in Xm.  

Rows 1 and 3 report estimates of the base specification from the base replication sample and from 

                                                 
17 Hoxby (1994a) adopts this strategy to study the effect of private school competition on public school performance. 
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the zip-code matched sample of public schools, respectively.  Rows 2 and 5 repeat these estimates 

without district-level covariates, while rows 3 and 6 add back to the samples 6 public schools 

previously excluded for lack of SDDB data.  Excluding the SDDB covariates produces slightly more 

negative choice effects in each IV specification, while adding the 6 schools missing SDDB data has 

essentially no effect.  Finally, row 7 adds 174 private schools in the NELS sample.  This produces a 

slightly more negative effect in the “streams” specification, but the other three estimates are less 

negative with private schools included.   

One explanation for these uneven results might be that there is substantial sampling 

variability in the MSA private enrollment rate in the NELS sample, which includes less than one 

private school per MSA.  For this reason, I turn to the control-function approach in Table 6.  First 

on the basic replication sample (in Panel A) and then on the zip-code-matched public school sample 

(Panel B), I modify Hoxby’s basic specification by including a control for an inverse Mills ratio 

derived from the MSA-level private enrollment rate, measured from Census data.18  The Mills ratio 

coefficients are uniformly negative:  Higher private enrollment rates seem to reduce public school 

average scores, as would be expected if private school students are positively selected, though only 

three of the eight estimates are significant.  The inclusion of the private enrollment control lowers 

the choice effect slightly in all eight specifications.  These effects, though again far from significant, 

are again consistent with the hypothesized selection bias in Hoxby’s specification, and suggest that 

estimates of her specification may be upward-biased estimates of the effect of interdistrict choice on 

public school productivity.  

                                                 
18 The inverse Mills ratio is ( ) )1()1()( 1

jjj ��φ�λ −−Φ≡ −
, where j�  is the MSA private enrollment rate (Card 

and Payne 2002).  Specifications that instead include a polynomial in the private enrollment rate do not fit the data better 
than does the Mills ratio specification, and have similar consequences for the choice coefficient. 
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8. The clustered error structure and standard error estimates 

I consider in this section several estimators of the sampling variance of the OLS and IV 

coefficients that are robust to the NELS data’s clustered error structure.  I am unable to reproduce 

Hoxby’s standard errors.  When I use her district and metropolitan area random effects 

specification, my estimated standard errors are 15-30% larger than hers; more robust error estimates 

range from 20-70% larger than those that she reports. 

The NELS used a stratified sampling scheme, in which just over 1,000 schools were selected 

and 25 students were surveyed from each selected school.  The 8th grade replication sample consists 

of 11,495 students, but they are drawn from only 548 schools, 432 districts, and 196 MSAs.  If there 

are any unobserved factors influencing student test scores that are common to students in the same 

school, district, or metropolitan area, the classical standard errors considered so far—which impose 

( ) ( ) ( ) 0varvarvar === mdmsdm eee  in equation (3)—will likely overstate the effective sample size and 

understate sampling variances. 

Table 7 reports several standard error estimates for the base replication sample and 

specification, as reported in Tables 2 and 3.  Panel A considers the 8th grade reading score as an 

outcome, while Panel B presents results for 12th grade reading scores.  Column A repeats the 

coefficients of interest from the earlier tables, along with their classical standard errors.   

Columns B through D report estimates of the standard errors that derive from an 

implementation of Moulton’s (1986) estimator for the variance of OLS and IV coefficients under an 

error components model like (2).  In column B, only a metropolitan component is allowed (that is, I 

allow ( ) 0var ≠me  but maintain ( ) ( ) 0varvar == sdmdm ee ).19  The standard deviation of em is 1.07 in 

                                                 
19 This is a traditional random-effects model, although I estimate the sampling variance of classical OLS and IV 
coefficients rather than using a more efficient ML or FGLS estimator. 
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the OLS model in Panel A and similar (though not reported in Table 7) in IV models.  Standard 

errors in Column B range from one-third to two-thirds larger than in Column A. 

Column C loosens the error specification, allowing both metropolitan and district error 

components.  This is the model that Hoxby uses.  The estimated district component is positive, and 

drives out the MSA-level component (in Panel A, though not in Panel B).  Standard errors of the 

choice coefficients are similar to those in Column B, but are substantially larger than those that 

Hoxby reports for the same model (repeated in Column G).  

Column D reports an even less restrictive specification that allows for a school component 

to the error term.  In both panels, the school component is quite large, and in its presence there are 

no estimated district or metropolitan area components.20  Standard errors are slightly larger than in 

Column C. 

Finally, Columns E and F explore less parametric variance estimators that are robust to 

heteroskedasticity and to arbitrary correlations among the residuals of students in the same 

metropolitan area.  Column E reports the “clustered” standard errors that were also reported in 

Tables 2 and 3.  These derive from a procedure that is consistent under arbitrary within-MSA 

covariance matrices, and therefore nests the error components model.21  Clustered standard errors 

are similar to those in Columns C and D.  A similarly non-parametric approach is to collapse the 

data to the metropolitan level, regressing average NELS scores in the MSA on the choice index, 

MSA-level controls, and the MSA average of all district, school, and individual controls.  I present 

                                                 
20 Note that there are relatively few districts in the sample that contribute multiple schools, providing little power for the 
district component estimation.  Also, the 12th grade sample in Panel B is endogenously dispersed across schools, and the 
large school component may reflect this sorting as much as it does variation in school quality. 
21 This approach is asymptotically justified, with asymptotics in the number of clusters.  It can be poorly behaved when 
the number of groups is small, but the 196 MSAs in the NELS sample are probably sufficient.  Indeed, clustering is 
probably better behaved than is the Moulton estimator in situations, like that in Column D, where there are relatively 
few contrasts from which to estimate district-level error components. 
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estimates of this sort in Column F, with heteroskedasticity-robust standard errors.  The estimated 

standard errors here are slightly larger than in previous columns. 

Taken together, the estimates in Table 7 indicate that classical estimators substantially 

understate the sampling variability of the coefficient of interest in models like Hoxby’s.  All of the 

more robust estimators produce substantially larger standard errors than are estimated under the 

classical assumption of zero autocorrelation.  This can have important implications for inference.  

Compare the standard errors in Table 8 with the point estimate that Hoxby reports for the effect of 

choice on 8th grade scores, 3.82.  Only one of the five robust standard error estimates for the 

streams specification permits us to distinguish Hoxby’s estimate from zero effect at the 5% level.  

This is not quite true for the 12th grade analysis, where Hoxby’s coefficient of 5.77 has a t-statistic 

between 2 and 2.2 with four of the five robust standard errors.  The replication estimate of this 

coefficient, of course, is substantially smaller than is Hoxby’s, and has a t-statistic of about 1. 

9. Evidence from SAT Scores 

Although the NELS provides a random sample of students and schools, it is somewhat thin:  

There are fewer than 3 NELS public schools in the average MSA observed in the data, and over 100 

MSAs contain no sample schools.  The asymptotic distribution of the instrumental variables 

estimator may thus be a poor guide to its performance in the NELS sample.  Table 8 presents 

estimates from an alternative data set containing observations on approximately one third of 

metropolitan SAT-takers from the 1994 cohort matched to their schools and MSAs.  These data 

contain observations from nearly every school in the 190 MSAs in SAT-taking states.  I use only 

observations from public schools, and modify Hoxby’s specification by including a control for an 

inverse Mills ratio in the MSA private enrollment rate.  Standard errors are clustered at the MSA 

level. 
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Although the SAT sample is thick, it is not random:  Students choose whether to take the 

SAT, and the average SAT-taking rate in the sample MSAs is about 45%.  In an effort to avoid 

sample selection bias coming from this decision, I also control for a quadratic in the MSA public 

school SAT-taking rate.  For comparability to earlier results, SAT scores are standardized to the 

same mean (50) and standard deviation (10) as the NELS scores. 

None of the four models in Table 8 indicates a statistically significant effect of choice on 

student SAT scores.  Moreover, three of the four point estimates are negative.  Exogeneity tests fail 

to reject the negative OLS coefficient in any of the IV specifications.  Finally, the point estimates are 

quite small:  Where Hoxby’s 8th grade model indicates that a one unit increase in competition raises 

scores by 0.38 standard deviations, the effects in Table 9 range from -0.03 to +0.12, with an upper 

bound to the OLS confidence interval of +0.06. 

10. Conclusion 

The current analysis has not considered Hoxby’s results from the NLSY, and cannot speak 

to the validity of her conclusions from those data, which echo her NELS results in indicating a 

salutary effect of interdistrict competition on school output.  Hoxby seems to find her NELS 

estimates the most compelling, however, and focuses her discussion on these. 

I have not been able to determine the source of the substantial divergence between Hoxby’s 

(2000) results and my own.  The research design requires bringing together over half a dozen distinct 

data sets, several of which exist in multiple versions or vintages and few of which are designed for 

analyses of this sort.  The researcher must make many decisions, many arbitrary, about the creation 

of a sample and the definition of control variables; it would have been quite difficult for Hoxby to 

report these decisions in sufficient detail to permit exact replication.  I have attempted to explore the 

sensitivity of the results in the analyses reported here and in many others that are not, but have not 
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exhausted the set of possible permutations.  Evidently, Hoxby made different decisions—surely 

equally defensible—than did I, with important consequences for the results.   

The estimates from my reanalysis of the NELS data, along with the SAT score results, do 

not support Hoxby’s conclusions that “naïve estimates (like OLS) that do not account for the 

endogeneity of school districts are biased toward finding no effects” (p. 1236).  I find little evidence, 

in either data set, of bias in OLS estimates.  OLS estimates are consistently more negative than are 

those from IV, but the difference is always well within the margin of sampling error. 

There is similarly little evidence in the results presented here to support Hoxby’s claim that 

“Tiebout choice raises productivity by simultaneously raising achievement and lowering spending” 

(p. 1236-7).  I have not revisited Hoxby’s results on the relationship between choice and school 

spending, but I am unable to find any discernable effect of choice on student achievement.  A more 

conservative conclusion would be that the relatively few United States metropolitan areas, variation 

among which identifies the choice effects in the models considered here, are insufficient to precisely 

estimate any weak relationship that may exist between jurisdictional fragmentation and student 

performance.  There is no basis here to reject a hypothesis of no effect, but neither is there much 

power against alternative claims of small effects, either positive or negative. 
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Hoxby, Table 2
(A) (B) (C) (D) (E)

Instruments
Number of larger streams / 100 0.080

(0.040)
Number of smaller streams / 100 0.034 0.037 0.020

(0.007) (0.007) (0.006)
1942 choice index 0.694 0.660

(0.046) (0.047)
Control variables

Population (10,000,000s) 150.00 0.36 0.17 0.12 0.02
(130.00) (0.15) (0.15) (0.12) (0.12)

Land Area (100,000s of sq. miles) 0.50 1.00 0.53 0.64 0.41
(0.50) (0.26) (0.27) (0.20) (0.21)

Mean log(HH income) -0.25 0.15 0.17 0.19 0.20
(0.16) (0.11) (0.11) (0.08) (0.08)

Gini coeff., HH income -3.58 -2.44 -2.44 -1.45 -1.48
(0.81) (0.80) (0.77) (0.60) (0.59)

Population: Fr. aged 0-19 1.86 1.27 1.75 0.87 1.17
(0.80) (0.87) (0.85) (0.65) (0.65)

Population: Fr. aged 65+ 0.45 -0.21 0.37 0.74 1.02
(0.61) (0.72) (0.70) (0.55) (0.55)

Population: Fr. Black 0.83 0.83 0.65 0.53 0.46
(0.41) (0.37) (0.36) (0.28) (0.28)

Population: Fr. Hispanic 0.09 0.39 0.35 0.28 0.26
(0.18) (0.25) (0.25) (0.19) (0.19)

Population: Fr. Asian 1.88 -0.77 -0.77 0.18 0.33
(1.00) (0.45) (0.43) (0.71) (0.69)

Index of racial homogeneity -0.18 0.71 0.40 0.40 0.27
(0.49) (0.29) (0.29) (0.23) (0.23)

Index of ethnic homogeneity 0.70 -0.51 -0.40 -0.42 -0.36
(0.70) (0.30) (0.29) (0.22) (0.22)

Adults: Fr. some college -1.00 -1.85 -1.47 -0.79 -0.63
(0.41) (0.46) (0.45) (0.35) (0.35)

Adults: Fr. BA+ 0.95 0.31 0.37 0.03 0.06
(0.42) (0.35) (0.34) (0.27) (0.26)

Index of educational homogeneity -2.95 -1.47 -0.71 0.06 0.36
(1.03) (1.01) (0.98) (0.78) (0.77)

N 316 335 335 333 333
R2 nr 0.47 0.51 0.70 0.71
F -statistic for exclusion of instruments 24.4 24.8 223.7 121.9
Notes:  Observations are unweighted metropolitan areas.  Dependent variable in all columns is a Herfindahl-based 
index of choice among school districts in the MSA; see text for details.  All models include 9 Census division fixed 
effects.  "nr"=Not reported in Hoxby (2000).  Hoxby's larger and smaller streams variables have mean (S.D.) 7.9 (14.8) 
and 182.7 (208.8), respectively.  In the replication sample, these statistics are 193.4 (204.0) for smaller streams and 0.86 
(0.26) for the 1942 choice index.

Table 1.  First-stage models for Hoxby's index of choice among districts

Replication



OLS
IV: 

Streams OLS
IV: Sm. 
streams

IV: 1942 
choice IV: Both

(A) (B) (C) (D) (E) (F)
Index of choice among districts -1.43 5.77 -0.16 2.93 0.96 1.13

(0.65) (2.21) (0.55) (1.67) (0.78) (0.77)
[1.01] [2.63] [1.62] [1.57]

Individual Covariates
log(Family income) nr 1.54 0.83 0.81 0.76 0.76

(0.16) (0.14) (0.14) (0.14) (0.14)
Female nr 1.96 1.95 1.91 1.98 1.97

(0.23) (0.23) (0.23) (0.23) (0.23)
Asian nr 0.28 -1.49 -1.47 -1.61 -1.62

(0.59) (0.60) (0.60) (0.62) (0.62)
Black nr -5.49 -5.71 -5.57 -5.68 -5.67

(0.50) (0.43) (0.44) (0.43) (0.43)
Hispanic nr -2.87 -2.33 -2.28 -2.40 -2.40

(0.52) (0.53) (0.53) (0.53) (0.53)
Parents:  Some college nr 2.31 2.24 2.30 2.23 2.24

(0.30) (0.29) (0.30) (0.30) (0.30)
Parents:  BA + nr 5.45 6.38 6.44 6.37 6.37

(0.30) (0.34) (0.34) (0.34) (0.34)
District Covariates

Mean log(HH income) nr nr 1.67 2.41 2.56 2.61
(1.35) (1.40) (1.36) (1.36)

MA-level Covariates
Mean log(HH income) nr -5.42 -0.51 -1.16 -1.00 -1.05

(5.53) (1.70) (1.74) (1.72) (1.72)
Population: Fr. Asian nr -5.62 -10.52 -9.64 -30.68 -30.78

(13.07) (10.49) (10.53) (11.68) (11.68)
Population: Fr. Black nr -0.73 -0.90 -3.46 -3.34 -3.50

(6.06) (6.18) (6.33) (6.20) (6.19)
Population: Fr. Hispanic nr 0.25 4.40 2.59 2.65 2.56

(3.52) (4.92) (5.02) (4.94) (4.94)
Adults: Fr. BA+ nr 3.16 3.64 3.05 5.48 5.47

(5.93) (3.92) (3.94) (3.94) (3.94)
Number of students / MSAs
Exog. test (p -value) -- nr -- 0.05 0.14 0.06

Notes:  Dependent variable is the NELS 12th grade reading score.  Regressions use NELS weights, adjusted to weight each MSA 
equally.  Following Hoxby, all columns include controls for MA-level population, land area, and 9 census division fixed effects, 
as well as for both district- and MA-level mean log household income and Gini coefficient; population fraction Asian, Hispanic, 
and Black; fraction of adults with some college and with BAs; and indices of racial, ethnic, and educational homogeneity.  
"nr"=Not reported in Hoxby (2000).  Replication columns C-F report classical standard errors in parentheses, not the error-
components estimates reported by Hoxby.  Square brackets report "clustered" (on the MSA) standard errors for the choice 
coefficient.  Using either errors, none of the unreported coefficients (except division effects) are significant in any of the 
replication specifications.  Reported p -values for exogeneity tests are based on the classical standard errors.

Table 2.  Basic models for NELS 12th grade reading score, Hoxby (2000) and replication

ReplicationHoxby (2000)

6,119 / 209 5,865 / 212



OLS
IV: 

Streams OLS
IV: Sm. 
streams

IV: 1942 
choice

IV: 
Both

(A) (B) (C) (D) (E) (F)
Index of choice among districts -0.24 3.82 -0.47 0.51 -0.02 0.03

(0.49) (1.59) (0.42) (1.36) (0.61) (0.60)
[0.64] [2.08] [1.14] [1.12]

Individual Covariates
log(Family income) nr nr 1.01 1.00 1.00 1.00

(0.09) (0.09) (0.09) (0.09)
Female nr nr 2.11 2.11 2.09 2.09

(0.17) (0.17) (0.17) (0.17)
Asian nr nr -0.58 -0.56 -0.60 -0.60

(0.51) (0.51) (0.52) (0.52)
Black nr nr -4.09 -4.08 -4.09 -4.09

(0.32) (0.32) (0.32) (0.32)
Hispanic nr nr -2.24 -2.23 -2.20 -2.20

(0.37) (0.37) (0.37) (0.37)
Parents:  Some college nr nr 2.52 2.53 2.53 2.53

(0.21) (0.21) (0.21) (0.21)
Parents:  BA + nr nr 6.92 6.94 6.94 6.94

(0.25) (0.25) (0.25) (0.25)
District Covariates

Mean log(HH income) nr nr 4.29 4.52 4.37 4.39
(0.99) (1.03) (1.00) (1.00)

MA-level Covariates
Mean log(HH income) nr nr -3.36 -3.70 -3.51 -3.54

(1.24) (1.32) (1.27) (1.27)
Population: Fr. Asian nr nr -14.63 -14.05 -13.58 -13.57

(7.95) (7.99) (8.90) (8.90)
Population: Fr. Black nr nr -0.08 -0.68 -0.24 -0.28

(4.31) (4.39) (4.36) (4.36)
Population: Fr. Hispanic nr nr 2.34 1.89 2.24 2.22

(3.46) (3.52) (3.51) (3.51)
Adults: Fr. BA+ nr nr 6.12 5.97 5.95 5.95

(2.81) (2.82) (2.85) (2.85)
Number of students / MSAs
Exog. test (p -value) -- nr -- 0.45 0.23 0.16

Notes:  Dependent variable is the NELS 8th grade reading score.  See notes to Table 2.

Table 3.  Basic models for NELS 8th grade reading score, Hoxby (2000) and replication

ReplicationHoxby (2000)

10,790 / 211 11,495 / 196



Streams Choice42 Both
(A) (B) (C) (D) (E) (F) (G)

1. 163 433 9,098 -0.83 0.97 -0.38 -0.23
(0.45) (1.28) (0.65) (0.63)
[0.66] [1.99] [1.16] [1.15]

2. 196 548 11,495 -0.47 0.51 -0.02 0.03
(0.42) (1.36) (0.61) (0.60)
[0.64] [2.08] [1.14] [1.12]

3. 196 551 11,558 -0.48 0.47 -0.02 0.03
(0.42) (1.36) (0.61) (0.60)
[0.64] [2.09] [1.14] [1.12]

4. 195 553 11,614 -0.78 0.51 -0.53 -0.43
(0.43) (1.35) (0.61) (0.60)
[0.67] [1.99] [1.16] [1.14]

5. 195 556 11,683 -0.77 0.58 -0.60 -0.49
(0.42) (1.35) (0.61) (0.60)
[0.67] [1.99] [1.15] [1.13]

Table 4:  Robustness of estimated choice effect on 8th grade reading scores to small changes 
in sample.

Notes :  Each row explores a different method of assigning NELS schools to metropolitan areas.  115 schools are assigned 
differently in row 2 than in row 1; 3 in 3 than in 2; 19 in 4 than in 3; and 3 in 5 than in 4.  Specifications are those in Table 
3.  Classical standard errors in parentheses; clustered standard errors in square brackets.

Zip code used to confirm 
district address

Raw CCD MSA codes

PMSA codes on CCD repaired 
(Base replication sample )

Obsolete/invalid CCD codes 
repaired

District address used to assign 
MSA

Sample size: Estimated Choice effect
Information used to match 
NELS schools to MSAs

IV
MAs Schools Students OLS



Table 5:  Estimated choice effect when sample includes private schools

Specification Streams Choice42 Both
(A) (B) (C) (D) (E)

Panel A:  Basic replication sample
11,495 -0.57 0.17 -0.15 -0.11

(0.41) (1.31) (0.60) (0.59)
[0.63] [1.99] [1.12] [1.09]

11,495 -0.74 -0.18 -0.41 -0.38
(0.41) (1.27) (0.60) (0.58)
[0.63] [1.88] [1.09] [1.06]

11,627 -0.71 -0.18 -0.36 -0.34
(0.41) (1.27) (0.60) (0.58)
[0.63] [1.91] [1.09] [1.06]

Panel B:  Zip code-matched sample
11,683 -0.81 0.27 -0.68 -0.58

(0.42) (1.31) (0.61) (0.59)
[0.66] [1.92] [1.14] [1.11]

11,683 -0.88 -0.08 -0.87 -0.79
(0.41) (1.27) (0.60) (0.59)
[0.66] [1.88] [1.11] [1.08]

11,815 -0.83 -0.07 -0.78 -0.71
(0.41) (1.28) (0.60) (0.59)
[0.66] [1.90] [1.10] [1.07]

15,298 -0.25 -0.17 -0.34 -0.32
(0.36) (1.10) (0.51) (0.50)
[0.64] [1.82] [1.01] [1.00]

Notes :  Sample and specification in Rows 1 and 4 is that from Table 4, rows 1 and 5, respectively.  Rows 2 and 5 
exclude the district-level controls from Hoxby's specification.  Rows 3 and 6 add to the sample 6 schools 
previously excluded for lack of district-level covariates.  Row 7 adds an additional 174 private schools that are 
excluded from all previous estimates.  Classical standard errors in parentheses; clustered standard errors in square 
brackets.

Estimated Choice effect
IV

OLS
Sample 

Size

Without district-level (SDDB) 
controls

Add 6 public schools without 
SDDB data

Add 174 private schools

Hoxby specification

Without district-level (SDDB) 
controls

Add 6 public schools without 
SDDB data

Hoxby specification

3.

2.

1.

7.

6.

5.

4.



Table 6:  Estimated choice effect when private enrollment is controlled

Streams Choice42 Both Streams Choice42 Both
(A) (B) (C) (D) (E) (F) (G) (H)

Panel A:  Basic replication sample
1. -0.47 0.51 -0.02 0.03

(0.42) (1.36) (0.61) (0.60)
[0.64] [2.08] [1.14] [1.12]

2. -0.56 0.35 -0.14 -0.09 -2.70 -2.16 -2.46 -2.43
(0.42) (1.41) (0.62) (0.61) (1.82) (1.99) (1.85) (1.85)
[0.62] [2.11] [1.13] [1.10]

Panel B:  Zip code-matched sample
3. -0.77 0.58 -0.60 -0.49

(0.42) (1.35) (0.61) (0.60)
[0.67] [1.99] [1.15] [1.13]

4. -0.90 0.36 -0.76 -0.66 -3.96 -3.20 -3.91 -3.84
(0.43) (1.40) (0.62) (0.61) (1.83) (2.00) (1.85) (1.85)
[0.65] [1.99] [1.14] [1.12]

Notes :  Rows 1 and 3 report estimates of choice effect in Hoxby's specification from Table 4, rows 1 and 5, respectively.  
Rows 2 and 3 add a control for an inverse Mills ratio derived from the MSA-level private enrollment rate to the Hoxby 
specification, using the same samples as in the preceeding rows.  Classical standard errors in parentheses; clustered standard 
errors in square brackets.

OLS

With control for 
private enrollment

OLS
IV

Inverse Mills ratio coefficient

Hoxby specification

Hoxby specification

With control for 
private enrollment

Estimated choice effect
IV



Table 7.  Alternative standard error estimates for 8th grade replication sample

(A) (B) (C) (D) (E) (F) (G)
Panel A:  Base year (8th grade) replication sample

Coefficients and estimated standard errors
OLS -0.47 -0.08 -0.24

(0.42) (0.56) (0.56) (0.59) (0.64) (0.77) (0.49)
IV: Streams 0.51 0.98 3.82

(1.36) (1.96) (1.85) (2.13) (2.08) (2.57) (1.59)
IV:  Choice42 -0.02 0.15

(0.61) (1.02) (1.09) (1.22) (1.14) (1.29)
IV:  Both 0.03 0.22

(0.60) (0.98) (1.02) (1.16) (1.12) (1.26)
Standard deviation of error components (OLS model)

MA (N=196) 1.07 0.00 0.00 nr
District (N=432) 1.37 0.00 nr
School (N=548) 1.96
Individual 8.95 8.83 8.82 8.83

Panel B:  Second follow-up (12th grade) replication sample
Coefficients and estimated standard errors

OLS -0.16 0.19 -1.43
(0.55) (0.72) (0.79) (0.86) (1.01) (1.11) (0.65)

IV: Streams 2.93 3.08 5.77
(1.67) (2.73) (2.88) (3.35) (2.63) (2.74) (2.21)

IV:  Choice42 0.96 1.64
(0.78) (1.27) (1.48) (1.76) (1.62) (1.86)

IV:  Both 1.13 1.76
(0.77) (1.23) (1.43) (1.70) (1.57) (1.80)

Standard deviation of error components (OLS model)
MA (N=212) 1.65 1.27 0.00
District (N=513) 1.90 0.00
School (N=744) 3.64
Individual 8.69 8.26 8.24 8.19

Notes:  Columns A-E report alternative estimates of the standard error of the choice coefficient from the replication estimates 
in Table 3, deriving from different assumptions about the correlation between the residual test scores of students in the same 
school, district, and MA.  Column A assumes that all observations are independent, and reports classical standard errors.  
Columns B-D allow for components of the error at the MA; MA and district; and MA, district, and school levels, and estimate 
standard errors using Moulton's (1986) formula for random-effects-style models.  Column E reports standard error estimates 
from STATA's "cluster" command, which is robust to arbitrary heteroskedasticity and within-MA serial correlation.  Column F 
re-estimates the Hoxby model on MSA-level means, implicitly permitting arbitrary within-MA serial correlation, with 
heteroskedasticity-robust standard errors.  Column G reports Hoxby's estimates, which she reports allow for district and MA 
error components as in Column C.

MA
MA & 

District
MA, Dist. 
& School

Hoxby 
(2000)Cluster 

on MA
Error components Data 

collapsed 
to MA level

Replication estimates and standard errors
Classical



OLS
IV: Sm. 
streams

IV: 1942 
choice IV: Both

(A) (B) (C) (D)
Index of choice among districts -0.26 1.23 -0.29 -0.17

(0.43) (1.25) (0.56) (0.54)
Individual Covariates

log(Family income) 1.37 1.37 1.36 1.36
(0.07) (0.07) (0.07) (0.07)

Female -1.26 -1.26 -1.27 -1.27
(0.09) (0.09) (0.09) (0.09)

Asian 0.59 0.56 0.59 0.59
(0.25) (0.25) (0.26) (0.26)

Black -6.61 -6.62 -6.62 -6.62
(0.16) (0.16) (0.16) (0.16)

Hispanic -2.99 -3.00 -2.99 -2.99
(0.14) (0.14) (0.14) (0.14)

Parents:  Some college 1.79 1.79 1.79 1.79
(0.12) (0.12) (0.12) (0.12)

Parents:  BA + 4.79 4.79 4.79 4.79
(0.14) (0.14) (0.14) (0.14)

District Covariates
Population: Fr. Asian -5.47 -4.17 -4.78 -4.77

(2.67) (2.86) (3.03) (3.04)
Population: Fr. Black -4.02 -3.86 -3.88 -3.89

(1.54) (1.59) (1.58) (1.58)
Population: Fr. Hispanic -4.12 -3.98 -4.00 -4.01

(1.59) (1.67) (1.59) (1.60)
Adults: Fr. some college 4.90 5.01 4.99 5.00

(1.80) (1.84) (1.82) (1.82)
Adults: Fr. BA+ 8.73 8.26 8.65 8.62

(1.35) (1.48) (1.38) (1.38)
Index of educational homogeneity 7.54 7.38 7.43 7.43

(2.16) (2.13) (2.16) (2.15)

Exogeneity test (p -value) 0.15 0.78 0.57

Notes:  Dependent variable in all columns is the SAT score, re-scaled to have mean (S.D.) 50 (10).  Sample consists 
of SAT takers attending public schools in metropolitan areas wholly contained within "SAT states."  N=332,029 
students; 4,453 schools; 2,546 districts; and 190 MSAs.  Regressions use SAT sampling weights, adjusted to weight 
each MSA equally.  Standard errors, clustered on the MSA, in parentheses.  Specification includes all control 
variables listed in notes to Table 2, as well as an inverse Mills ratio derived from the MSA-level private enrollment 
rate and a quadratic in the MSA public school SAT-taking rate.  None of the suppressed control variable 
coefficients is significant in any specification, except land area in Column B and several division effects.

Table 8.  Estimates from SAT data




