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Section 1 responds to the arguments made in Chetty, Friedman, and Rock-
off’s (hereafter, “CFR”) Reply, CFR (2016).

I respectfully disagree with many of the conclusions drawn by CFR (2015),
which in many cases are based on claims that are theoretically correct but
turn out, upon investigation, to be empirically irrelevant. None of the evidence
presented by CFR (2015) alters the main conclusions of my earlier draft, which
persist in the current version:

1. That the CFR (2014a; hereafter, “CFR-I”) research design is not a valid
quasi-experiment because the treatment is correlated with observable de-
terminants of the outcome;

2. That much but not all of the problem derives from CFR-I’s exclusion of a
non-random subset of classrooms from school-grade-subject-year means;

3. That estimates that adjust for differences in observables indicate a non-
trivial but not enormous degree of “forecast bias”; and

4. That estimates of teachers’ long-run effects are not at all robust and quite
likely to be biased by student sorting.

Section 2 presents some important specification and robustness analyses, focus-
ing on the treatment of teachers who are observed for only one or two years and
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who therefore lack leave-two-out value-added (VA) predictions. These demon-
strate clearly that my results do not derive from mispecification of the model
used to predict these teachers’ VA, and are robust to a variety of choices about
how the are handled so long as something is done to avoid the sample selection
bias in CFR-I’s main specification.

1 Rejoinder to CFR (2015)

The exchange between myself and Chetty, Friedman, and Rockoff (CFR) has
involved several rounds of private communication, dating back to 2010, and a
more recent exchange of public drafts and responses. Throughout, it has been
constructive and scholarly, and I have learned a great deal from it. I am grateful
to CFR for their role in it, and the final version of my Comment reflects many
good points that CFR have made.

Nevertheless, CFR and I continue to have sharply different interpretations
of what the empirical patterns mean for the substantive questions under inves-
tigation. My Comment reflects my interpretation; CFR offer a very different
interpretation in their Reply. In this appendix, I discuss the December 2016
version of CFR’s Reply (CFR 2016), written in response to a version of my
Comment (Rothstein, 2016) that differs only cosmetically from the final, Jan-
uary 2017 version. To ensure a complete record, the original, March 2016 version
of my rejoinder (which responded to the July 2015 version of CFR’s Reply) will
remain posted on my webpage, at http://eml.berkeley.edu/~jrothst/CFR/
supplement_mar2016.pdf.

I respectfully disagree with many of the conclusions drawn by CFR (2016),
which in many cases are based on claims that are theoretically correct but
turn out, upon investigation, to be empirically irrelevant. None of the evidence
presented by CFR (2016) alters the main conclusions of my earlier draft, which
persist in the current version:

1. That the CFR-I (2014a) research design is not a valid quasi-experiment
because the treatment is correlated with observable determinants of the
outcome;

2. That much but not all of the problem derives from CFR-I’s exclusion of a
non-random subset of classrooms from school-grade-subject-year means;
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3. That estimates that adjust for differences in observables indicate a non-
trivial but not enormous degree of “forecast bias”; and

4. That estimates of teachers’ long-run effects are not at all robust and quite
likely to be biased by student sorting.

I begin by laying out CFR (2016)’s six main arguments, in order of their impor-
tance to my conclusions, along with my responses. I follow this by presenting
simulation evidence to support one of these responses. In the interests of space,
I do not discuss other arguments made in CFR’s response that are less relevant
to my conclusions.

CFR (2016)’s six main arguments are:

1. Examination of prior test scores is not informative about the validity of
CFR-I’s quasi-experimental research design, because value-added is esti-
mated from prior test scores and is thus mechanically correlated with them.

It is theoretically correct that the use of prior test scores in the construction
of the VA measures could create a spurious correlation, making it appear that
changes in teacher VA are not randomly assigned. But in practice, this does
not account for the result. The main text and Appendix B present a number of
analyses that probe this possibility. All indicate that the failure of the placebo
test is real, not spurious. The most definitive is an alternative placebo test that
is based solely on non-test student characteristics (race, gender, special educa-
tion, free lunch status, limited English status, grade repetition, etc.). This test
is entirely immune from mechanical correlations, but also shows that changes in
mean teacher VA, as estimated by CFR-I, are significantly related to changes
in student preparedness (see Table 2).

2. The primary source of the correlation between changes in teacher value
added (VA) and changes in prior test scores is common shocks that affect
both. When these so-called “mechanical effects” are addressed via changes
in the specification, the correlation is eliminated.

CFR (2014c; 2014d; 2015; 2016) have advanced this idea in a series of public
responses over the last several years, pointing to potential mechanical effects
deriving from teachers who follow students across grades or from school-year-
subject-level shocks. As noted above, explanations based on test score dynamics
cannot possibly account for the placebo test result, as it holds even when non-
test variables are used in place of prior test scores. Moreover, for each proposed
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mechanical channel, I have implemented alternative specifications of the placebo
test that close off that channel. In particular, I close off the teacher-follower
channel by instrumenting with VA changes computed only over non-follower
teachers, and I close off the school-year-subject shock channel by using “leave
three out” VA measures that do not rely on data from t � 2 in computing VA
predictions for t � 1 or t. Results are remarkably stable across specifications
(see Appendix Table B1).

CFR (2016) suggest that there may be school-level shocks that are correlated
across years, so that shocks in t � 3 influence both VA predictions for t � 1

teachers (even when t� 2 data are excluded) and the prior year scores of t� 1

students, which are measured in t � 2. Serially correlated school-level shocks
could produce the failure of my placebo test even when I use leave-three-out VA
scores that do not rely on t� 2 data.

To ensure that my results are not driven by this channel, I estimated spec-
ifications (Appendix Table B1) that exclude all data from several years before
the {t� 1, t} window from the VA predictions. If in fact the placebo test result
derived from serially correlated shocks, the coefficient should decline as more
years are excluded. But in fact this has essentially no effect on the results – even
when I base VA predictions solely on future data. Thus, while CFR-I present
simulation evidence that serially correlated shocks could drive the results, the
empirical evidence from real data indicates that they do not.

It is also worth noting that the dynamics that CFR (2016) propose as sources
of mechanical effects would in general invalidate not just the placebo test but
also CFR-I’s quasi-experimental research design itself, and would lead CFR-I
to understate forecast bias. School-year or school-subject-year shocks that are
correlated between t� 2 and t� 1 would invalidate the design, as the leave-two-
out teacher VA predictions for t � 1 would be influenced by shocks correlated
with those to students’ t � 1 test scores.1 It would take a very particular
dynamic structure to generate correlations between t�3 and t�2 scores but not
between those in t� 2 and t� 1. Similarly, the presence of meaningful numbers
of “follower” teachers would imply that the outcome in the quasi-experiment
reflects not only the quality of the grade-g teachers but also the (correlated)

1CFR (2016) present a specification with school-subject-year FEs. But with only two or
three observations (grades) per school-subject-year cell, these specifications rely very heavily
on a strict exogeneity assumption that is prima facie violated by teachers who switch grades
within schools. In my explorations with simulated data – including with the data generating
process of the simulations used in CFR (2016)’s Table 3 – I have found that these specifications
are very poorly behaved.
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quality of grade g� 1 teachers, and thus that the quasi-experimental coefficient
overstates the parameter of interest, �.

3. The augmented quasi-experimental specification that includes a control for
the change in prior year scores yields a biased estimate of the forecast bias
coefficient �.

Again, this is theoretically possible, but the claim that it is relevant in practice
is pure speculation unsupported by evidence. CFR (2016) hypothesize that the
change in prior year scores has two components, with one component correlated
with the change in VA but not with the change in end-of-year scores and the
other correlated with end-of-year scores but not with VA. This might be a rea-
sonable hypothesis if the “mechanical effects” claims discussed above held up.
Even here, quite restrictive dynamic structures would be needed to generate
mechanical effects from sources that are uncorrelated with the dependent vari-
able in CFR-I’s analyses. CFR (2016) argue for “non-parametric” specifications,
but their specifications and simulations generally rely on quite strong implicit
assumptions. As noted above, the evidence does not support CFR’s claims
about mechanical effects. Without them, while anything is possible, the only
reasonable conclusion is that CFR’s (2016) conclusions rely on quite speculative,
unsupported assumptions.

It is also possible, and more likely, that both the specification without a
control for prior year scores (as in CFR-I) and one with such a control (as in my
preferred analyses) are biased by unmeasured components of the endogeneity of
teacher VA changes. I do not claim that the specification with controls is highly
credible. But in the presence of clear evidence that the quasi-experimental treat-
ment is not randomly assigned, and that this is not attributable to CFR (2016)’s
hypothesized mechanical effects, a specification with controls is preferable, in
my view, to one that does nothing to address the endogeneity of treatment.
Moreover, I show (see Table 3) that the top-line result of forecast bias around
10-15% (i.e., of �̂ around 0.85-0.9) is robust to several ways of addressing the
endogeneity, which adds to my confidence in the result.

4. An analysis restricted to school-grade-subject-year cells without missing
data is the most definitive way to address concerns about sample selection
due to missing data, and validates CFR-I’s conclusion that VA scores are
forecast unbiased.

I disagree that this is the most definitive way to address concerns about sample
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selection due to missing data – it requires discarding between three-quarters
(New York) and four-fifths (North Carolina) of the school-grade-subject-year
cells, and estimates are quite imprecise. Moreover, the remaining sample in-
cludes fewer teachers who are new to teaching or to the sample grades, and
forecast bias in this subsample might be different from that in the broader pop-
ulation.

More importantly, as discussed in Section 2, below, the subsample analysis
does not validate the conclusion of no forecast bias. First, I find that the
placebo test coefficient is quite large and statistically significant even in the
complete data subsample. Second, CFR-I inexplicably drop the school-year fixed
effects from their preferred specification when they analyze the complete data
subsample. When I include them the estimate of � is 0.918 without controlling
for prior year scores and 0.899 (and significantly different from one) when this
control is included. This is broadly similar to what is obtained from the full
sample.

Thus, at most this subsample analysis shows that not all of the problem with
CFR-I’s specification is attributable to their exclusion of a non-random subset
of classrooms from school-grade-subject-year means. It does not demonstrate
(or even point in the direction) that the design is valid, or that forecast bias
is zero, even locally for the small subset of schools without missing data. CFR
(2016)’s statement that “[t]his approach consistently yields estimates of forecast
bias close to zero in the New York, North Carolina, and Los Angeles datasets” is
incorrect as it applies to North Carolina, and the single specification that CFR
have reported from their dataset is not enough to demonstrate the point there
either.2

5. The inclusion of all classrooms in the analysis, using grand mean imputa-
tion, generates downward-biased estimates of the key parameter �.

We are in agreement that analyses that include all classrooms are not defini-
tive, but rest on the appropriateness of the model used to predict teachers’ VA. I
focus on specifications that use the grand mean because this is the strategy pro-
posed by CFR, who use it throughout their analyses for some (most of CFR-I’s

2

Despite repeated requests, CFR have never reported estimates of the subsample analysis
with school-year fixed effects, so it is not clear whether the same result holds in New York.
Bacher-Hicks et al. (2014) also report estimates of the subsample analysis, but like CFR
include only year fixed effects.
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specifications) or all (one failed robustness test in CFR-I, and the main speci-
fications of CFR-II) of the classrooms with missing data.3 It is also consistent
with CFR’s prediction model (seen as an example of Empirical Bayes methods)
for classrooms that have data.

That said, the claim that my use of grand mean predictions accounts for my
results is incorrect. CFR (2016) are correct that positively correlated VA across
teachers within schools could lead to attenuation with grand mean predictions.4

But again, this theoretical point is not empirically relevant. Results of both the
placebo test and the forecast bias estimation are robust to a variety of alterna-
tive prediction strategies, including some that are robust to non-independence
of teacher VA within schools (which is the source of bias under grand mean
predictions). See the discussion in Section 2, below. And even when I follow
CFR-I’s preferred strategy of excluding classrooms without teacher VA predic-
tions, the results are quite clear that � is less than one in any specification that
does anything to address the endogeneity of changes in teacher VA (Table 3).

Three other points are worth noting about the imputation issue:

• CFR (2016)’s attenuation argument may help to explain why some of the
placebo test coefficients are smaller when all classrooms are included than
when they are not (see Table 2); it suggests that the failure to reject the
placebo test null hypothesis in some all-classroom specifications should
not be taken as support for the exclusion restriction.

• CFR (2016) present simulation results to demonstrate bias from grand
mean imputation when teacher VA is correlated within schools. This sim-
ulation assumes that there are no differences across classrooms in stu-
dents’ prior achievement. My argument for the importance of accounting
for classrooms with missing teacher VA was predicated on the empirical
result that students’ prior scores are positively correlated with teacher VA,
so excluding a classroom has effects of the same sign on mean teacher VA

3Throughout all of their quasi-experimental analyses, CFR-I and CFR-II impute VA scores
of zero for teachers observed in t�1 and t but not in other years. At issue is whether to apply
the same imputation to teachers observed only in a single year, as is done in CFR-I’s Table
5, Column 2 and throughout CFR-II, or to exclude these teachers and their students from
the analysis, as is done elsewhere in CFR-I. I see no basis for viewing the grand mean as the
correct prediction for the first group of teachers but not for the second, and CFR have never
offered an explanation for this, nor have they defended the implicit – and demonstrably false
– missing-at-random assumption needed to support excluding either group of classrooms.

4An earlier draft of my comment (Rothstein, 2014) presented estimates that used all class-
rooms on one side of the regression and a subset on the other in order to build intuition for
the full-sample results. CFR (2015) quite reasonably objected that these specifications were
not very informative. They have therefore been removed.
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and mean student preparedness that bias the �̂ coefficient upward. It is
thus not surprising that CFR’s simulation shows no bias from excluding
classrooms with missing VA, as it fails to include the relevant features of
the real data. Where the real data are concerned, CFR (2016) may object
to the particular imputation model proposed by CFR-I, but they do not
dispute that excluding classrooms with missing data, as in CFR-I’s main
analyses, biases �̂.

• Finally, the data generating process for CFR (2016)’s simulation violates
the exclusion restrictions that CFR-I require to identify �, even with ran-
dom assignment and complete data, as these restrictions rule out non-zero
intra-school correlations. If the intra-school correlation is non-zero, the
change in the average of unbiased predictions of individual teachers’ VA is
not an unbiased prediction of the change in the average VA. If the corre-
lation is positive, CFR-I’s methods will likely overstate the change in VA,
even with complete data, biasing �̂ upward.5 This could offset bias from
endogenous teacher switching (or from endogenous sample selection).

One final point: While we agree that specifications that include all classrooms
rest on the appropriateness of the model used to predict teachers’ VA, it is
also true that specifications, like those that CFR-I prefer, which exclude a non-
random set of classrooms also rest on assumptions. These assumptions are
quite implausible – they require that student preparedness be uncorrelated with
teacher VA. It is empirically the case that students’ observables are correlated
with teacher VA; whether their unobservables are as well is the entire point of
the CFR-I exercise. So while it is reasonable to disbelieve specifications that rely
on imputations, it is not reasonable to treat those that simply exclude teachers
with missing data as unbiased.

6. There exist assumptions in which CFR-II’s two-step procedure for estimat-
ing the association between teachers’ test score effects and their impacts
on longer-run outcomes is consistent but the OLS regression with controls
that I emphasize is not.

5

In CFR (2016)’s simulation, teachers’ VA is known with certainty, so � is identified even
with non-zero correlations. But in CFR-I’s actual data, a teacher’s VA in one year is pre-
dicted based on noisy measures of her performance in other years. In this case, if true VA
is correlated among teachers at the same school, the change in the school-grade-subject-year
average predicted VA, �Qsgmt, is a biased prediction of the change in the average true VA,
violating CFR-I’s Assumption 3.
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This point responds to an earlier version of my comment (Rothstein, 2014).
CFR (2015)’s discussion of this issue clarified it substantially for me, and the
revised comment has been rewritten with this in mind.6 I believe that the main
point stands.

CFR are correct that the exclusion restrictions under which my approach
identifies  do not strictly nest those under which CFR-II’s approach identifies
that parameter. But they do not state clearly the conditions under which their
approach is consistent but mine is not. This could occur only in very particular,
implausible circumstances. In order for their approach to be consistent, one
of two conditions would need to hold: Either observed student characteristics
that are predictive of long-run outcomes must be uncorrelated with teachers’
estimated value-added, or the between-teacher and within-teacher associations
between these characteristics and students’ long-run outcomes must be identical.
Each of these conditions is demonstrably false. Moreover, even if both were
to hold, CFR-II also require a strong, untestable assumption that unobserved
determinants of students’ long-run outcomes are uncorrelated with teacher VA.

My proposed strategy relies on a subtly different assumption, that unob-
served determinants of students’ long-run outcomes are uncorrelated with teacher
test score VA conditional on observables. This is not strictly nested within CFR-
II’s assumptions. Specifically, my assumption might be violated if parents were
able to discern teachers’ long-run impacts ⌧ and to sort into classrooms on
this basis. This would create correlations between ⌧ and students’ unobserved
characteristics, and would make the probability limit of ̂X differ from .

It is worth considering, however, the specific conditions under which the
OLS estimator with controls is inconsistent but the CFR-II two-step estimator
is consistent. This requires that parents do not sort into classrooms on the basis
of teachers’ test score value-added µ, as this would make the CFR-II estimator
inconsistent, but that they do sort on the basis of the component of teachers’
long-run effects that is unpredictable from µ, ⌧ � E [⌧ |µ]. In this case, student
observables would be correlated with the error term in a bivariate regression of
⌧ on µ, so the multiple regression coefficient would not converge to the bivariate
coefficient of interest.

This condition strikes me as exceedingly unlikely. Thus, I place little poste-
6In personal communication regarding the long-run analysis, CFR emphasized measure-

ment error in teacher VA. Responding to this, I (Rothstein, 2014) presented IV specifications
designed to eliminate attenuation due to measurement error in an explanatory variable, with
zero impact on the results. CFR now point to a different dynamic, so I no longer emphasize
the IV results.
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rior weight on the possibility that the multiple regression coefficient X is biased
but the CFR-II two-step estimator is unbiased. Because the assumptions needed
for CFR-II’s estimator are demonstrably false, and because violations of them
are likely to bias upward the estimate of the association between teachers’ test
score VA and their long-run impacts, I also place little weight on the possibility
that both are unbiased. The plausible alternatives, in my view, are that X is
unbiased but CFR-II’s estimates are biased, or that both are biased. I thus have
little confidence that CFR-II’s cross-sectional estimates of the association be-
tween teachers’ test score VA and their long-run impacts are informative about
the association of interest. As discussed in my comment, I have similarly lit-
tle confidence in CFR-II’s quasi-experimental estimates, which as in CFR-I are
quite sensitive to controls for failure of the quasi-experiment. In my view, the
question of whether teachers’ test score VA is correlated with their long-run
impacts (if indeed teachers vary substantially in their causal effects on students’
longer-run outcomes) remains unresolved.

2 Teachers with missing leave-two-out predictions

CFR-I’s key VA measure used in each paper is a “leave-two-out” forecast of a
teacher’s outcomes in year t or t � 1 based only on data from prior to t � 1

or after t.7 This forecast can be seen as an Empirical Bayes prediction of the
teacher’s impact in t � 1 or t, and by construction is an unbiased prediction
of the VA score in that year. When teachers are observed only in t � 1 or t,
however, there is no other data on which to base this forecast. In most of their
analyses, CFR-I exclude such teachers, and their students, from their calculation
of school-grade-year means. Rothstein (2017) argues that this sample selection
biases the key coefficient �̂ toward the null hypothesis of � = 1. Following one
specification in CFR-I and most of the analysis in CFR (2014b; “CFR-II”), he
includes these teachers and their classrooms, assigning them a VA prediction
equal to the grand mean.

The grand mean is an unbiased prediction of every teacher’s VA, and is the
logical extension of the Empirical Bayes methodology for CFR-I’s leave-two-out
predictions. But the relevant prediction for CFR-I’s quasi-experimental analysis
is of the school-grade-year mean VA, not that of the individual teacher. If VA is
correlated across teachers within schools, then the average of unbiased forecasts

7I do not review the notation of CFR-I and Rothstein (2017) in detail here; readers are
referred to those papers for this.
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for each teacher is a biased forecast of the average VA at the school. Failure to
account for this would create upward bias in both CFR-I’s quasi-experimental
coefficient �̂ and Rothstein’s (2017) placebo test coefficient. Importantly, this
bias arises even if leave-two-out forecasts are available for every teacher. Avoid-
ing it would require shrinking teachers’ observed performance toward the school
mean rather than toward the grand mean, and using school average perfor-
mance rather than the overall average to predict VA for teachers with missing
leave-two-out data.

Table 1 explores alternative strategies for assigning VA predictions to teach-
ers with missing leave-two-out data. Following CFR (2015), I use CFR-I’s leave-
two-out predictions for teachers for whom they are available in every specifica-
tion in this table, though the above discussion suggests that the should be
changed as well.

Panel A presents CFR-I’s main regression of the year-over-year change in
school-grade-subject mean test scores on the corresponding change in mean
teacher predicted VA. Panel B presents Rothstein’s (2017) placebo test, replac-
ing the dependent variable with the change in mean prior year scores. Panel C
augments the Panel A specification with a control for the change in mean prior
year scores.

The first two columns reproduce estimates from Rothstein (2017) for context:
Column 1 leaves the teachers with missing leave-two-out predictions and their
students out of the school-grade-year means, while column 2 includes them
using the grand mean for the teachers’ VA predictions. When the teachers are
left out, �̂ = 1.03 (standard error 0.02) when students’ prior scores are not
controlled, and the null hypothesis of � = 1 is not rejected. But the placebo
test fails, with a highly significant coefficient of 0.14, and when students’ prior-
year scores are controlled the key coefficient falls to 0.93 (0.02) and the null
hypothesis is rejected. When teachers with missing leave-two-out predictions are
included, even the baseline specification in Panel A rejects the null hypothesis
(�̂ = 0.90, SE 0.02). The placebo test result is weaker but still significant, and
the specification that controls for observables yields �̂ = 0.86 (SE 0.02).

Columns 3-5 present results from other imputations. Column 3 uses the
(appropriately shrunken) mean residual of all teachers at the school in all years
other than t � 1 or t to forecast the VA of teachers in those years who are
not seen outside that window. This method would be robust to correlations
among teachers at the same school. Column 4 uses the mean residual of all
teachers across all schools who are observed for two years or less. This captures
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the possibility that the teachers with missing leave-two-out predictions may
systematically differ from others. Finally, Column 5 uses the mean for such
teachers at the same school, as in other cases using only data from outside the
t� 1 to t window.

Results are qualitatively similar across all of the different imputation mod-
els. In each case, the baseline specification in Panel A yields an estimated �̂

between 0.90 and 0.93, all significantly different from one. The placebo test fails
regardless of the imputation used, with the models that use only same-school
data indicating much larger placebo test violations. And when prior scores are
controlled, the key coefficient falls to between 0.85 and 0.89, again always sig-
nificantly different from one. It is clear that non-independence of teacher VA
within schools cannot account for Rothstein’s (2017) results.

Table 2 takes a different approach to the issue of missing leave-two-out pre-
dictions. Column 2 of CFR-I’s Table 5 suggests a substantial degree of forecast
bias when teachers with missing VA predictions are assigned the grand mean
VA, and as Table 1 indicates the same is true in the North Carolina sample. But
CFR (2016) point instead to Columns 3 and 4 of CFR-I, Table 5, reproduced
for the North Carolina sample in Rothstein (2017), Table A5. These limit the
sample to school-grade-subject-year cells with few (Column 3) or no (Column
4) missing VA predictions, and in each sample they indicate less forecast bias.
CFR (2016) interpret this as evidence that the imputation algorithm accounts
for the result in Column 2, and argue that the Column 4 result in particular
indicates that VA predictions are unbiased, at least in the subsample of school-
grade-subject-year cells with no missing VA predictions.

But this result is not at all robust. In particular, it evaporates when school-
year fixed effects are added. These fixed effects are included in CFR-I’s main
specifications but omitted without explanation from their Table 5.

The odd numbered columns of Table 2 report the four specifications from
CFR-I’s Table 5. Note that the placebo test coefficients are quite large in
these columns, though the models with controls in columns 1, 5, and 7 yield �

estimates that are not distinguishable from 1 (in large part because the models
without controls yield � estimates well in excess of 1).

As noted, these specifications, following CFR-I, include only year fixed ef-
fects, rather than the school-year effects included in the models that CFR-I
prefer in the rest of their analysis. This raises the possibility of bias from un-
modeled school trends. The even numbered columns of Table 2 add back the
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school-year fixed effects.8 This change reduces the placebo coefficients, which
become insignificant in columns 6 and 8. But it also reduces the forecast bias
coefficients. CFR-I’s preferred model, which limits the sample to cells with no
missing data, yields a forecast bias coefficient of �̂ = 0.92 without controls and
0.90 (significantly different from one) with a control for the change in prior year
scores. This is broadly similar to what is obtained from the full sample.
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Supplement	Table	1.	Assessing	sensitivity	of	results	to	the	imputation	model

Grand	
mean

School	
mean

Missing	
mean

Missing	mean	
at	school

(1) (2) (3) (4) (5)

Change	in	mean	teacher 1.030 0.904 0.915 0.933 0.911
predicted	VA (0.021) (0.022) (0.022) (0.022) (0.021)

Change	in	mean	teacher 0.144 0.092 0.134 0.084 0.128
predicted	VA (0.021) (0.022) (0.023) (0.023) (0.022)

Change	in	mean	teacher 0.933 0.860 0.850 0.892 0.847
predicted	VA (0.015) (0.017) (0.017) (0.017) (0.017)

Change	in	mean	student 0.675 0.536 0.535 0.536 0.535
prior	year	score (0.004) (0.009) (0.009) (0.009) (0.009)

Notes:	Specifications	in	column	1,	panels	A-C	are	identical	to	those	in	Table	1,	Column	2;	
Table	2,	Column	1;	and	Table	3,	Column	2,	respectively.	Successive	columns	include	all	
classrooms	in	the	dependent	and	independent	variables,	varying	the	VA	prediction	
assigned	to	teachers	who	are	excluded	in	column	1.	In	column	2,	these	teachers	are	
assigned	the	grand	mean	of	zero.	In	Column	3,	the	prediction	is	based	on	the	shrunken	
leave-two-out	mean	at	the	same	school.	In	Column	4,	it	uses	the	shrunken	leave-two-out	
mean	among	all	teachers	with	missing	VA	predictions.	In	column	5,	it	uses	the	shrunken	
leave-two-out	mean	among	all	teachers	at	the	school	with	missing	VA	predictions.	All	
specifications	include	school-year	fixed	effects.	N=79,466	school-grade-subject-year	cells	
in	Column	1;	91,221	in	Columns	2-5	in	Panel	A;	and	90,701	in	Columns	2-5,	Panels	B-C.

Including	all	classrooms,	assigning	to	teachers	
with	missing	VA	predictions:

Excluding	
classrooms	
missing	

teacher	VA	
predictions

Panel	A:	Quasi-experimental	models	without	controls

Panel	B:	Models	for	change	in	prior-year	scores

Panel	C:	Models	for	change	in	end-of-year	scores,	with	
controls	for	change	in	prior-year	scores



Supplement	Table	2.	Robustness	of	CFR-I,	Table	5's	robustness	results
Quasi-Experimental	Estimates	of	Forecast	Bias:	Robustness	Checks

(1) (2) (3) (4) (5) (6) (7) (8)

Change	in	mean	teacher 1.174 1.080 0.936 0.904 1.100 0.965 1.081 0.918
predicted	VA (0.040) (0.044) (0.022) (0.022) (0.035) (0.040) (0.043) (0.051)

Year	fixed	effects X X X X
School-year	fixed	effects X X X X
Number	of	School	x	Grade	x	
Subject	x	Year	Cells 79,466 79,330 91,221 91,221 34,495 34,495 23,445 23,445

Change	in	mean	teacher 0.296 0.226 0.175 0.093 0.199 0.064 0.177 0.033
predicted	VA (0.039) (0.043) (0.023) (0.022) (0.033) (0.038) (0.040) (0.047)

Change	in	mean	teacher 0.981 0.928 0.853 0.859 0.978 0.926 0.973 0.899
predicted	VA (0.030) (0.029) (0.019) (0.017) (0.028) (0.031) (0.035) (0.041)

Change	in	mean	student 0.650 0.675 0.497 0.537 0.611 0.608 0.610 0.583
prior	year	score (0.004) (0.005) (0.009) (0.009) (0.006) (0.007) (0.007) (0.009)

Panel	B:	Models	for	change	in	prior-year	scores

Panel	C:	Models	for	change	in	end-of-year	scores,	with	controls	for	
change	in	prior-year	scores

Notes:	See	notes	to	CFR	(2014a),	Table	5.	Columns	1,	3,	5,	and	7	in	Panel	A	reproduce	results	from	
that	table.	Even-numbered	columns	add	school-year	fixed	effects.	Panel	B	changes	the	dependent	
variable,	while	Panel	C	adds	a	control	for	the	change	in	the	prior-year	score.

Teacher	Exit	
Only

Full	Sample <25%	Imputed	
VA

0%	Imputed	VA

Panel	A:	Quasi-experimental	models	without	controls


