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⇤

Chetty, Friedman, and Rocko↵ (2014a, 2014b) study value-added
(VA) measures of teacher e↵ectiveness. CFR (2014a) exploits
teacher switching as a quasi-experiment, concluding that student
sorting creates negligible bias in VA scores. CFR (2014b) finds VA
scores are useful proxies for teachers’ e↵ects on students’ long-run
outcomes. I successfully reproduce each in North Carolina data.
But I find that the quasi-experiment is invalid, as teacher switching
is correlated with changes in student preparedness. Adjusting for
this, I find moderate bias in VA scores, perhaps 10-35% as large,
in variance terms, as teachers’ causal e↵ects. Long-run results are
sensitive to controls and cannot support strong conclusions.

This comment revisits the analysis and conclusions of a pair of recent papers in
the American Economic Review that use data from New York City school records
and tax filings to examine central questions about value-added (hereafter, VA)
models of teacher e↵ectiveness.1

The first paper (Chetty, Friedman and Rocko↵, 2014a; hereafter, CFR-I) at-
tempts to measure bias in VA scores, interpreted as estimates of teachers’ casual
e↵ects. Teachers’ VA scores may be biased if the observed student character-
istics included as controls – most notably prior scores – fail to fully absorb the
unmeasured determinants of student-teacher matches, which often depend on par-
ent requests or teacher specializations (Rothstein, 2010). CFR-I exploits teacher
switches – events where one teacher exits or enters a school or grade – as plausibly
exogenous changes in the quality of teachers to which students are exposed, and
concludes that any biases are minimal.
The second paper (Chetty, Friedman and Rocko↵, 2014b; hereafter CFR-II) in-

vestigates whether a teacher’s VA score is a useful proxy for her e↵ect on longer-
run outcomes, including high school graduation, college enrollment, and adult
earnings. CFR-II concludes that high-VA teachers have dramatically better ef-
fects on all of these outcomes, suggesting that replacing a low VA teacher with an
otherwise similar teacher with a higher VA score would bring substantial benefits
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for students’ long-run success.
I revisit these questions in data from North Carolina.2 Using CFR’s methods

and drawing on their programs (CFR 2014f), I successfully reproduce all of the key
results of each paper. Further investigation, however, indicates that neither North
Carolina nor New York data support CFR’s substantive conclusions regarding VA
bias or teachers’ long-run e↵ects.
I focus on CFR-I, as CFR-II relies on its conclusion that VA scores are unbiased.

Figure 1, Panel A reproduces CFR-I’s Figure 4A, which illustrates CFR-I’s key
result. It is a “binned scatterplot” of the cohort-over-cohort change in mean
student test scores at the school-grade-subject level (on the vertical axis) against
the change in mean predicted VA of the teachers in the school-grade-subject cell
(on the horizontal axis), after residualizing each against school-year indicators.
CFR-I estimate “forecast bias” (which I define more carefully below) as one minus
the slope of this relationship. In the New York data, the estimated slope is 0.957
and the standard error is 0.034. Forecast unbiasedness cannot be rejected. Panel
B shows the same figure as estimated from the North Carolina sample. The
picture is quite similar, with a slope of 1.030 (S.E. 0.021). Given the substantial
di↵erences between New York City and North Carolina, the close correspondence
is remarkable. Other results are also successfully reproduced.
When I investigate further, however, I find that teacher switching does not

create a valid quasi-experiment. The treatment – the change in the average VA
of the teaching sta↵ in a school-grade cell from one year to the next – is not as
good as randomly assigned but rather is correlated with pre-determined student
characteristics that are predictive of outcomes. Figure 2 illustrates this. It is
identical to Figure 1B, except that the vertical axis now plots the change in
students’ mean scores in the year prior to encountering the teachers whose VA
scores are used to construct the horizontal axis. If the change in teacher VA were
randomly assigned, the slope here should be zero. But in fact the slope is 0.144,
with a standard error of 0.021.3

While the slope in Figure 2 is much smaller than in Figure 1B, it is significantly
and substantively greater than zero. CFR (2015a) have confirmed this result in
the New York data, as have Bacher-Hicks, Kane and Staiger (2014) in Los Angeles.
Moreover, the result is not specific to test scores – I also reject a zero slope when
I use on the vertical axis predictions of students’ end-of-year scores based only on
non-test, demographic characteristics of students such as free lunch status, race,
and ethnicity (see Table 2, below).4

The association between VA changes and changes in student preparedness
across cohorts may bias quasi-experimental estimates like those in Figure 1 rel-
ative to the causal e↵ect of improving teacher VA, understating forecast bias.

2Other responses to CFR-I and CFR-II include Ballou (2012) and Adler (2013).
3If the apparently influential first and last points are excluded, the slope is 0.116 (0.035).
4This result disproves CFR’s (2015a) and Bacher-Hicks et al.’s (2014) speculation that the placebo

test violation in Figure 2 is due to “mechanical” factors related to the use of test scores in constructing
VA scores. See Section III.B and the online Appendix.
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When I modify the quasi-experimental analysis to control for changes in student
preparedness, the key coe�cient declines notably and becomes statistically dis-
tinguishable from one. Figure 3 replaces the end-of-year scores used to measure
student outcomes in Figure 1 with the change in students’ scores from the end
of the prior grade. These gain scores di↵erence away factors that are beyond
the current-year teacher’s control, so better capture learning – and the teacher’s
contribution – than do unadjusted end-of-year scores. The slope in Figure 3 is
0.889 (0.015), significantly and substantively less than one. This is quite robust
– across a variety of specifications that control for observed changes in student
preparedness in various ways, the key coe�cient is never higher than 0.93, and
the confidence interval always excludes 1.
Further exploration shows that the association shown in Figure 2 is not pri-

marily due to true endogeneity of teacher switching (as would occur, for example,
if schools in gentrifying neighborhoods attract higher-VA recruits than those in
declining neighborhoods), but rather is mostly an artifact of CFR-I’s sample con-
struction, which excludes a non-random subset of classrooms. When I reconstruct
the analysis using all classrooms, following one of CFR-I’s robustness checks, the
placebo test coe�cients are smaller and less robust, and the estimated slope of
end-of-year scores with respect to changes in VA is both lower (0.904 in the
Figure 1 specification) and less sensitive to the inclusion of controls for student
preparedness.5

Rothstein’s (2009) simulations suggested that plausible hypotheses about the
amount of endogeneity in teacher VA scores imply that the prediction coe�cient
estimated by CFR-I should be between 0.6 and 1. My preferred estimates are
around 0.85, very much in the middle of that range. Thus, rather than ruling out
forecast bias in teachers’ VA scores, the CFR-I quasi-experiment demonstrates
that forecast bias is non-zero – not as large as might have been feared, but nev-
ertheless potentially important.
The relationship between forecast bias and the magnitude of the actual biases

in teachers’ VA scores (which CFR-I call “teacher-level bias”) depends on an aux-
iliary parameter – the correlation between teachers’ causal e↵ects and the bias
in their scores – that is not identified by the quasi-experiment. If this corre-
lation is assumed to be zero, as in nearly all past work, my results imply that
the bias component of VA scores is 10-20% as large, in variance terms, as the
component reflecting teachers’ causal e↵ects. The assumption of zero correlation
is unfounded, however. If it is loosened, teacher-level bias could be as small as
4% or as large as 100% of the variance of teachers’ true e↵ects. Horvath (2015)
estimates the correlation to be -0.3; if so, my estimates imply that the variance
of the bias is nearly 35% of the variance of teachers’ causal e↵ects.
Bias of this magnitude would lead to substantial misclassification of teachers

5The inclusion of all classrooms requires imputing expected VA scores to teachers who lack them.
My imputations follow those used by CFR-I and CFR-II. Both excluding classrooms and including them
with imputed VA scores require untestable assumptions, discussed below. Rothstein (2016) explores
robustness to alternative imputations, resting on di↵erent assumptions.
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with unusual assignments (e.g., those thought to be particularly e↵ective with
advanced or delayed students), and thus has important implications for their use
in teacher evaluations.6 Teachers may be unfairly rewarded or punished based
on the students they are assigned, and all teachers will face perverse incentives
to “game” their evaluations by altering these assignments, potentially reducing
allocative e�ciency. Moreover, the incentives that rewards and sanctions are
meant to create will be attenuated, as many will be allocated or withheld based
on factors other than e↵ective teaching.

Another implication of bias in VA scores is that inferences about the long-
run e↵ects of high VA teachers, as in CFR-II, are potentially confounded by the
bias component, which is likely to be correlated with unobserved determinants of
students’ long-run outcomes. I turn to this in Section IV.

CFR-II present both cross-sectional and quasi-experimental estimates of the
association between teachers’ VA scores and their impacts on long-run earn-
ings. I show that the cross-sectional estimates, which do not control even for
observed di↵erences in teachers’ students, rely on quite restrictive assumptions.
Estimates that include controls, while still requiring strong (though in my view
more plausible) exclusion restrictions, are more robust and, empirically, indicate
much smaller (by 33-80%, depending on the outcome) long-run e↵ects. Moreover,
as in the short-run analyses of CFR-I, I find that CFR-II’s quasi-experimental
analyses are quite sensitive to the inclusion of controls for endogeneity of teacher
switching. Indeed, none of the estimates with controls are significantly di↵erent
from zero.

This comment follows an extended exchange with CFR and others (see, e.g.,
Rothstein, 2014; CFR 2014d; 2014e; 2015a; and Bacher-Hicks, Kane and Staiger,
2014). The empirical results are remarkably robust across quite disparate settings.
However, while productive, the exchange has not led to consensus on the inter-
pretation of the results. I interpret them to indicate that the teacher-switching
research design does not provide the credibility of a successful quasi-experiment.
What evidence there is indicates that (a) VA scores are meaningfully, but not
overwhelmingly, biased by student sorting, with “forecast bias” around 15% and
(under reasonable assumptions) actual bias 10-35% as large, in variance terms,
as teachers’ causal e↵ects, and (b) teachers’ VA scores are less informative than
is implied by CFR-II’s results, and perhaps completely uninformative, about the
teachers’ long-run impacts.

I. Teacher VA, bias, and the teacher switching quasi-experiment

This section develops notation and describes CFR-I’s teacher switching quasi-
experimental research design and my test of it. I follow CFR-I’s notation where
possible; readers are referred to their paper for a more complete description.

6In Section V, I estimate the induced misclassification rate at around 25% in a best-case scenario.
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A. Teacher value-added

Anecdotally, classroom assignments depend on the school’s assessment of the
student’s ability and personality, on parental preferences (and on parents’ e↵ec-
tiveness at getting their preferences met), on teachers’ specializations, and on
factors that are idiosyncratic from the school’s perspective (e.g., the date that
the student enrolls). All of these may correlate with students’ potential and
preparedness.
The above factors are not measured, so cannot be controlled directly. VA

models attempt to limit the resulting bias in estimates of teachers’ causal e↵ects
on their students’ end-of-year test scores by controlling for those characteristics
which are observed. The most important of these factors is the student’s prior
test score, but some models (including CFR-I’s) also control for earlier scores, free
lunch status, disability, English proficiency, mobility, race, and gender. CFR-I,
unusual among VA models, also include classroom- and/or school-level means of
the individual controls.7

CFR-I’s VA model has several steps. Let A⇤
it

be the test score of student i at the
end of year t with teacher j (i, t), and let X

it

be a vector of observed covariates.
First, A⇤

it

is regressed on X

it

with teacher fixed e↵ects:

(1) A

⇤
it

= ↵

j(i,t) +X

it

� + ✏

it

.

Second, the X

it

� term is subtracted from A

⇤
it

to form a residual score:8

(2) A

it

⌘ A

⇤
it

�X

it

�̂ = ↵̂

j(i,t) + ✏̂

it

.

Third, this residual score is averaged to the teacher-year level to obtain Ā

jt

.
This is CFR’s basic estimate of the e↵ect of teacher j on her year-t students,
denoted µ

jt

. Finally, the teacher’s sequence of mean residuals across other years
t

0 6= t is used to form a leave-one-out forecast of the teacher’s residual in year t,

µ̂

jt

⌘ E

h
Ā

jt

|
�
Ā

jt

0
 
t

0 6=t

i
. CFR-I’s specific calculation of this forecast is complex

and designed to accommodate the possibility that µ

jt

may evolve (“drift”) over
time. For my purposes, it su�ces to note that µ̂

jt

is a shrinkage estimator,
which can be seen as an Empirical Bayes (EB) prediction of the teacher’s causal
e↵ect µ

jt

under the assumption that Ā
jt

is a noisy but unbiased estimate of µ
jt

.9

Importantly, µ̂
jt

is an unbiased prediction of Ā
jt

by construction, whether the
latter is an unbiased estimate of µ

jt

or not.

7The models used for actual evaluations generally use fewer controls (see, e.g., SAS Institute, 2015;
American Institutes for Research, 2015; Value-Added Research Center, undated).

8The teacher fixed e↵ects in (1) make little di↵erence: In the North Carolina sample, the correlation
between Ait, as defined in (1) and (2), and the residual from an OLS regression of A⇤

it on Xit without
fixed e↵ects is over 0.99 at the student level and 0.98 at the classroom level.

9I define bias more carefully below. For the moment, the necessary assumption for µ̂jt to be an
unbiased prediction of the causal e↵ect µjt is that Ājt � µjt is mean independent across years within
teachers – that any non-randomness in student assignments in any year is not persistent across years.
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CFR-I refer to the EB prediction µ̂

jt

as teacher j’s value-added. For clarity, I
reserve that term for the true causal e↵ect µ

jt

, and I refer to µ̂

jt

as the predicted
or forecast value-added. Hereafter, I will assume for simplicity of exposition that
µ

jt

⌘ µ

j

– that teachers’ causal e↵ects do not “drift.” Empirically, however, I
follow CFR-I’s methods, which do not impose this.

B. Bias in VA estimates and predictions

The goal of VA models is not to forecast teacher residuals, but to measure a
teacher’s causal e↵ect on her students. A central question in the VA literature
is whether the available controls are su�cient to permit this, or whether some
teachers are systematically assigned students who are unobservably advantaged
or disadvantaged, conditional on the VA model controls (Rothstein, 2010, 2009;
Guarino, Reckase and Wooldridge, 2012). In the above notation, Ā

jt

may over-
state µ

j

for teachers whose students are systematically but unobservably stronger
than expected given their Xs, and understate it for those with unobservably
weaker students. If the same teachers tend to be assigned the same types of
students each year, then µ̂

jt

will also be biased as a predictor of µ
j

.

Consider separating the mean residual Ā
jt

into four components:

(3) Ā

jt

= µ

j

+ b

j

+ v

jt

+ e

jt

.

The first term, µ
j

, represents the teacher’s causal e↵ect. The second and third
terms derive from non-random student assignments that create systematic dif-
ferences in ✏

it

across classrooms: b

j

is the component that is permanent within
teachers, while v

jt

varies across years. The former might capture teacher spe-
cializations – a teacher who is thought to be particularly e↵ective with, say,
hyperactive students might be assigned the same students year after year – and
the latter might arise if classroom groupings are non-random but classrooms are
distributed randomly across teachers. I assume that v

jt

is serially uncorrelated.10

The final term, e
jt

, is a noise term that is also independent across years. It in-
cludes pure sampling error and idiosyncratic classroom-level shocks such as the
proverbial dog barking on test day.

The shrinkage procedure in the final step of CFR-I’s model is designed to iso-
late the component of Ā

jt

that is stable across years. In e↵ect, this treats the
idiosyncratic bias term v

jt

as noise, comparable to e

jt

. But the method does not
isolate µ

j

from b

j

, which CFR-I refer to as “teacher-level bias.” Thus, a central
goal in the VA literature is to measure V (b

j

), and in particular to test whether
V (b

j

) = 0.

10This is restrictive – it does not allow, for example, for an autoregressive component of student
assignments. I adopt the decomposition for simplicity of exposition. In practice, any non-zero covariance
between bj + vjt and bj + vj,t+1 would create bias in VA-based evaluations, which are typically based
on just two or three years of data.
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CFR-I define “forecast bias” as B ⌘ 1� �, where:

� ⌘ cov (µ
j

, µ̂

jt

)

V (µ̂
jt

)
=

V (µ
j

) + cov (µ
j

, b

j

)

V (µ
j

) + V (b
j

) + 2cov (µ
j

, b

j

)
.

The second equality here follows from µ̂

jt

’s construction as an Empirical Bayes
prediction of µ

j

+ b

j

. Zero forecast bias (� = 1, B = 0) is necessary but not
su�cient for µ̂

jt

to be teacher-level unbiased (i.e., for V (b
j

) = 0). In particular,
if cov (µ

j

, b

j

) < 0 then � can equal or exceed one even when V (b
j

) > 0. The
available evidence suggests this is empirically relevant: Horvath (2015) estimates
corr (µ

j

, b

j

) = �0.3 for North Carolina teachers, while Angrist et al. (2015b)
estimate a correlation of �0.23 (with a large standard error) between schools’
causal e↵ects and the bias in school-level VA scores in Boston.
Rothstein (2009; see also Guarino, Reckase and Wooldridge, 2012) attempts to

quantify the magnitude of biases in common VA models, using the distribution of
observables across classrooms and assessments of the likely role for unobservables.
Assuming that corr (µ

j

, b

j

) = 0, he concludes that the plausible range for � is
roughly 0.6 to 1, corresponding to V (bj)

/V (µj) between zero and 2
3 . If the correlation

is instead -0.3, the upper bound of the variance ratio is about 0.75.

C. The teacher-switching quasi-experiment

CFR-I build on an experiment conducted by Kane and Staiger (2008) in which
students were randomly assigned. Let µ̂

jt

be a shrunken / Empirical Bayes predic-
tion based on observational data from years other than t. Random assignment in
t ensures that any determinants of the teacher’s students’ mean outcomes in that
year, other than the teacher’s own causal e↵ect µ

j

, are orthogonal to both b

j

and
µ̂

jt

. Thus, a regression of these mean experimental outcomes on the observational
prediction µ̂

jt

identifies �.
Unfortunately, it has proven di�cult to randomize students to classrooms at

a large scale, so experimental estimates of � have standard errors around 0.2 or
higher (Kane and Staiger, 2008, Kane et al. 2013; see also Rothstein and Mathis
2013) and have not substantially narrowed the plausible range.11

CFR-I generalize the experimental test to a non-experimental setting, exploiting
episodes where a teacher enters or leaves a school or switches grades within the
school. The replacement of one teacher with another should lead to an increase in
student achievement equal to the di↵erence between the teachers’ causal e↵ects.
If the teachers’ VA scores are unbiased estimates of their respective causal e↵ects,
then the di↵erence in Empirical Bayes predictions should forecast this di↵erence
without bias and scores should, on average, rise by as much as predicted. By
contrast, bias in the VA scores would mean that the di↵erence in causal e↵ects

11In a very similar analysis of school-level VA scores, Angrist et al. (2015b) estimate �̂ = 0.86 (S.E
0.08). They go on to develop a more powerful test of the sharper null hypothesis that V (bs) = 0 and
reject this. See also Deutsch (2013).
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will tend to be smaller (closer to zero) than the prediction by a factor B.
Without random assignment within schools, new and old teachers may be as-

signed di↵erently selected students, reproducing the non-experimental bias in
mean outcomes. To abstract from this, CFR-I aggregate to the school (s) - grade
(g) - subject (m) - year (t) level and consider changes in the average predicted
VA of the teaching sta↵.12 Their primary analyses regress the year-over-year
change in mean student scores, �A

⇤
sgmt

⌘ Ā

⇤
sgmt

� Ā

⇤
sgm,t�1, on the di↵erence

in mean predicted VA of the teachers to which the students were exposed (which
they denote �Q

sgmt

), with year or school-by-year fixed e↵ects.13 Their primary
conclusions are based on this regression.
For aggregation to the school-grade-subject-year level to eliminate student sort-

ing biases, it is essential that all students in the cell be included. As I discuss
below, in practice CFR-I exclude a non-random subset of classrooms from their
aggregates. This biases the quasi-experimental coe�cient toward the observa-
tional regression of Ā

jt

on µ̂

jt

, which necessarily – by virtue of the Empirical
Bayes shrinkage used to construct µ̂

jt

– has a coe�cient of one regardless of the
presence or absence of forecast or teacher-level bias.

D. Assessing the quasi-experiment

The regression of �A

⇤
sgmt

on �Q

sgmt

identifies � under CFR-I’s Assumption 3
(hereafter, “A3”):

ASSUMPTION 3 (Teacher Switching as a Quasi-Experiment): Changes
in teacher VA across cohorts within a school grade are orthogonal to
changes in other determinants of student scores.14

This assumption would be violated if, for example, schools that are gentrifying
– with later cohorts more advantaged than earlier cohorts – are able to attract
teachers that have higher (measured) VA than those who they are replacing.
A3 is not directly testable. But it is unlikely to hold if the change in student

characteristics at the school-grade-subject-year level is correlated with �Q

sgmt

.
Tests like this are a standard approach to probing the validity of a quasi-experiment,

12For their quasi-experimental analyses, CFR-I use “leave-two-out” predictions of the year-t and t� 1

residuals, which they denote µ̂

�{t�1,t}
jt and µ̂

�{t�1,t}
jt�1 , that are based on data from other years. I also

use leave-two-out predictions, but retain the µ̂jt notation.
13CFR-I’s discussion (p. 2617) suggests that the appropriate dependent variable is the change in

mean residual scores, as defined in (2). If �Qsgmt were randomly assigned, either raw or residual scores
should yield unbiased estimates of �. CFR-I’s empirical analysis uses mean raw scores on the grounds
that “changes in control variables across cohorts are uncorrelated with �Qsgmt,” (p. 2618). I show
below that this is not the case.

14An additional assumption, unstated by CFR-I, is required to support the aggregation of Empirical
Bayes predictions: Both µj and bj must be independent across teachers within school-grade-subject-year
cells and between outgoing and incoming teachers. The evidence suggests this assumption is counter-
factual, though perhaps not by enough to matter. CFR (2015a) report that the correlation of teachers’
(shrunken) VA within schools is approximately 0.2 in New York; in North Carolina, it is around 0.15.
See additional discussion below and in Rothstein (2016).
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and are analogous to tests commonly conducted to assess successful randomiza-
tion in true experiments. The most useful characteristics for such a test are
those that are predictive of outcomes but are not caused by grade-g teachers.
Rothstein (2010) uses this method to assess teacher-level VA estimates, finding
that students’ teacher assignments are correlated with the students’ test scores
in earlier grades.

CFR-I present a test of this form, using characteristics (household income,
homeownership) that are not included in the VA specification. They interpret
their null result (CFR-I, Table 4, column 4, reproduced below as column 3 of Table
1) as evidence in support of the assumption. But there is no reason not to also
examine variables that are included in the VA model’s X

it

vector. Indeed, these
characteristics are the most important to examine, as they are chosen specifically
to be strong predictors of students’ end-of-year scores so orthogonality failures
have great potential to create bias in estimation of �.

Below, I find that X

it

does change across years in ways that are correlated
with �Q

sgmt

. I begin with prior-year scores – VA models use these to capture
many otherwise hard to measure determinants of teacher assignments and of end-
of-year scores – but I also obtain similar results with the full score prediction
X

it

�̂ (see equation 1) and with a more restricted prediction based only on non-
test elements of X

it

(e.g., free lunch status, race, exceptionality) that are not
plausibly influenced by past teachers.

The obvious explanation is that A3 is violated. The online Appendix consid-
ers and rules out several potential “mechanical” explanations, proposed by CFR
(2015a; 2014d) and Bacher-Hicks, Kane and Staiger (2014) following circulation of
an initial draft of this comment, that might lead to rejections of the placebo test
null even if the underlying design is valid. In particular, the failure of the placebo
test is robust to specifications that “isolate[] sources of variation in teacher VA
that are not spuriously correlated with prior test scores,” as proposed by CFR
in their Reply. Further exploration indicates, however, that another mechanical
explanation is an important factor. Specifically, much of the problem derives
from CFR-I’s omission of teachers with missing VA predictions – those who are
observed in only a single year – from their analyses. These teachers are not ran-
domly selected, and the exclusion of their students from school-grade-subject-year
averages incorporates some of the observational student-teacher sorting into the
putative quasi-experiment.

This points to two alternative routes toward reducing bias in �̂ from endogene-
ity of �Q

sgmt

. One can control for observables that are correlated with �Q

sgmt

,
under a selection-on-observables assumption, or one can include the missing class-
rooms in the school-grade-subject-year means. Each requires assumptions (as, of
course, does CFR-I’s strategy of excluding a non-random subset of classrooms). I
pursue both options. Empirically, results are sensitive to doing something about
the failure of the quasi-experimental research design, but mostly insensitive to
just how it is addressed. In particular, results are similar across several methods
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for controlling for student preparedness and in specifications designed to “block”
possible channels by which prior-grade scores could be an intermediate outcome
of the current-grade teachers’ VA. The robustness of the adjusted results raises
confidence in their validity.15

II. North Carolina data

I draw on administrative data for all students in the North Carolina public
schools in 1997-2011, obtained under a restricted-use license from the North Car-
olina Education Research Data Center. North Carolina is a dramatically dif-
ferent setting from New York City. Nearly half of North Carolina schools are
rural. Education is provided by 219 separately administered districts (though the
state Department of Public Instruction (DPI) plays a larger role than in many
other states); New York City has a single district divided into administrative
sub-districts. Just over 25% of students in North Carolina are Black and un-
der 15% are Hispanic, with the remainder overwhelmingly white; in New York,
about 30% are Black, 40% are Hispanic, 15% are Asian, and only 15% are white
non-Hispanic.
North Carolina administers end-of-grade tests in math and reading in grades 3

through 8. Third grade students are given “pre-tests” in the Fall; I treat these as
grade 2 scores.16 I standardize all scores within each year-grade-subject cell.
The North Carolina administrative records record the identity of the test proc-

tor. This is usually but not always the student’s regular classroom teacher, though
in grades where students are taught by separate teachers for di↵erent subjects the
proctor for the math test might be the English teacher. I thus limit the sample to
students in grades 3-5, whose classrooms are generally self-contained. I use data
on teachers’ course assignments to identify exam proctors who do not appear to
be the regular classroom teacher.
Many studies using the North Carolina data exclude such proctors and their

students. That is not feasible here, as the quasi-experimental strategy requires
data on all students in the school-grade cell. Instead, I assign each proctor who is
not the classroom teacher a new ID that is unique to the test year.17 This ensures
that student achievement data is not used to infer the proctoring teacher’s impact.
Several of CFR-I’s covariates – absences, suspensions, enrollment in honors

classes, and foreign birth – are unavailable in the North Carolina data. Thus, my
X

it

vector has a subset of CFR-I’s controls: Cubic polynomials in prior scores in

15Rothstein (2016) further explores the inclusion of missing classrooms in the sample, varying the
strategy for assigning VA predictions to the missing teachers and restricting the sample to school-grade-
year cells with no missing data, as suggested by CFR (2015a).

16Pre-test scores are missing after 2008, as well as for math in 2006 and reading in 2008. Third graders
with missing pre-test scores are excluded. When students re-take the tests, I use only the score from the
first administration.

17I use a less restrictive threshold for a valid assignment than in past work (e.g., Clotfelter, Ladd and
Vigdor, 2006; Rothstein, 2010). Insofar as I fail to identify non-teacher proctors, this will attenuate the
within-teacher autocorrelation of Ājt. This autocorrelation is larger in my sample than in CFR-I’s. See
Figure A1 in the online Appendix.
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the same and the other subject, interacted with grade; gender; age; indicators for
special education, limited English, grade repetition, year, grade, free lunch status,
race/ethnicity, and missing values of any of these; class- and school-year- means of
the individual-level controls; cubics in class- and school-grade mean prior scores;
and class size.18 For long-run outcomes, CFR-II draw on IRS data. Lacking this,
I draw more proximate outcomes from high school transcripts (graduation, GPA,
class rank) and exit surveys (college plans).
I start with over 8.6 million student-year-subject observations, spread across

three grades (3-5), two subjects (math and reading), 1,723 schools, and 15 years
(1997-2011). After excluding students with missing test scores, special education
classes, and classes with fewer than 10 students, I am left with 7.1 million obser-
vations, of which 79% are linked to 36,451 valid teachers. My original sample is a
bit smaller than CFR-I’s, which contains approximately 18 million student-year-
subject observations, but the sample size for VA calculations is similar (7.1 million
vs. 7.6 million in CFR-I’s sample). I have non-missing leave-one-out predicted
VA scores for 257,066 teacher-year-subject cells, with an average of 22 students
per cell. The sample for the quasi-experimental analysis consists of school-grade-
subject-year cells with non-missing �Q

sgmt

. I have 79,466 such cells, as compared
with 59,770 in CFR-I.

III. The Teacher-Switching Quasi-Experiment: Reproduction and
Assessment

A. Reproducing CFR-I’s analysis in North Carolina data

I use CFR’s (2014f) Stata programs to reproduce their VA calculations and anal-
yses in the North Carolina data. Table 1 reports CFR-I’s main quasi-experimental
specifications (Panel A) along with corresponding estimates from the North Car-
olina data (Panel B). Column 1 presents coe�cients from a regression of the year-
over-year change in average scores at the school-grade-subject-year level (�A

⇤
sgmt

)
on the change in average predicted VA (�Q

sgmt

), with year fixed e↵ects.19 Col-
umn 2 repeats the specification with school-year fixed e↵ects.
The coe�cients of these regressions estimate � under assumption A3. If this

assumption holds, the null hypothesis of no forecast bias corresponds to � = 1,
while we would expect � < 1 if teacher-level bias is present and not too negatively
correlated with teachers’ causal e↵ects. My estimate in Column 1 (1.097) is
somewhat larger than CFR-I’s (0.974), and significantly greater than 1, but when
I add school-year fixed e↵ects in Column 2, the coe�cient (1.030) is much smaller

18Free lunch, limited English, and special education measures are missing in some years. I set each
to zero if missing, and include indicators for missing values (as well as class- and school-year means of
these) in X.

19Following CFR-I, the regression is weighted by the number of students in the school-grade-subject-
year cell; standard errors are clustered at the school-cohort level; and classrooms with teachers not seen
in other years are omitted from both dependent and independent variables.
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and, like CFR-I’s (0.957), indistinguishable from the null hypothesis. This is the
specification illustrated in Figure 1.
CFR-I report a placebo test of their quasi-experimental design based on changes

in predicted scores where predictions are made using only variables that are un-
a↵ected by teacher assignments. Specifically, CFR-I regress observed scores on
parent characteristics, then average the fitted values at the school-grade-subject-
year level, di↵erence across years, and use this as the dependent variable in the
quasi-experimental regression. This specification is reported in Column 3 of Table
1.20 In both samples, the year-on-year change in mean predicted VA is uncorre-
lated with the change in mean predicted scores, with an estimated coe�cient of
0.008 in North Carolina and 0.004 in New York.
Column 4 presents a specification drawn from CFR-I’s Table 5, Column 2. In

Columns 1-3, teachers who do not have leave-one-out VA predictions – because
they are observed only in t� 1 or t – are excluded from the school-grade-subject-
year VA mean, and their students are excluded from the test score average. In
Column 4, all teachers and students are included, with teachers with missing
predictions assigned the grand mean VA score of zero. In both the New York and
North Carolina samples, this leads to rejection of the null hypothesis that � = 1,
with �̂ = 0.877 in New York and �̂ = 0.936 in North Carolina. I discuss this
result in more depth in the next subsection.
The online Appendix presents reproduction estimates for most of CFR-I’s other

analyses. Results are generally quite similar in North Carolina as in CFR-I’s
sample. I summarize the few di↵erences briefly here. Math VA is more variable in
North Carolina, while English VA has a similar variance in the two samples (Table
A2). In both math and English, the autocorrelation of teacher VA across years
is higher in the North Carolina data (Table A2 and Figure A1 in the Appendix),
implying less noise in the measurement process and perhaps also less drift in
teachers’ true VA. While students with higher prior-year scores tend to be assigned
to teachers with higher predicted VA in both samples (Appendix Table A7),
special education students get higher VA teachers in North Carolina, on average,
but lower VA teachers in New York. In North Carolina but not in New York,
minority (black and Hispanic) students are assigned to teachers with lower VA,
on average, but in each district the relationship between school minority share
and average teacher VA is insignificantly di↵erent from zero.21

B. Assessing the Validity of the Quasi-Experiment

CFR-I’s main placebo test (see Table 1, Column 3) is based on permanent
parental characteristics, taken from tax returns. But these are unlikely to cap-

20CFR-I’s prediction is based on mother’s age, marital status, parental income, 401(k) contributions,
and homeownership, all drawn from tax files. Mine is based only on parental education, as reported in
the North Carolina end-of-grade test score files through 2007.

21Bacher-Hicks, Kane and Staiger (2014) find that teacher VA is significantly lower in high minority
share schools in Los Angeles.
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ture the dynamic sorting that Rothstein (2010) found to be a potentially impor-
tant source of bias in VA models. Moreover, they are not observed by school
administrators, so are unlikely to a↵ect teacher assignments directly.
Panel A of Table 2 presents additional placebo test estimates in the North

Carolina data. Each entry represents a separate quasi-experimental analysis,
using the same specification as in Table 1, Column 2, but varying the dependent
variable. In Column 1, the dependent variable is the between-cohort change in
mean prior-year scores for the same students used for the quasi-experimental
analysis. That is, when examining the change in the mean predicted VA of 5th
grade teachers at school s between years t � 1 and t, the dependent variable is
the change in average 4th grade scores across the same two cohorts (i.e., from
t � 2 to t � 1). Grade g � 1 scores are strongly predictive of grade-g scores,
at both the individual and school-grade-subject-year levels, so a correlation with
�Q

sgmt

would indicate that the quasi-experiment is not valid (subject to potential
caveats discussed below). The coe�cient is +0.144 and is highly significant.
(This is the specification illustrated in Figure 2.) Evidently, changes in student
preparedness are correlated with the quasi-experimental treatment, the change in
average predicted VA.
After a preliminary version of this paper was shared with CFR, they confirmed

that this result holds in New York as well. In a specification like that in Table
2, Column 1, albeit with year fixed e↵ects rather than school-year e↵ects, CFR
(2014d) report a coe�cient of +0.226 (standard error 0.033). When I use an
identical specification in the North Carolina sample, the coe�cient is +0.231
(0.021); Bacher-Hicks, Kane and Staiger (2014) report a +0.268 (0.039) coe�cient
in data from Los Angeles.
Column 2 of Table 2 repeats the placebo test, this time using predictions of

end-of-year scores based on all of the covariates included in the VA specification
rather than just the prior-year score. That is, the dependent variable here is the
cohort-over-cohort change in the mean of X

it

�̂, from equation (1). As �Ā

⇤
sgmt

=

�Ā

sgmt

+�X̄

sgmt

�̂, this is scaled to correspond exactly to the bias in the quasi-
experimental results deriving from the use of unadjusted scores, A⇤

it

, in place of
adjusted scores A

it

(see footnote 13). The coe�cient is 0.105 and is again highly
significant.
These results indicate that assumption A3 is violated – the change in average VA

across cohorts is correlated with other determinants of the change in outcomes, so
the association between the former and the latter does not identify �. Responding
to a preliminary draft of this comment, however, CFR (2014d; 2014e) suggest that
the results reflect a problem with the placebo test rather than with the research
design:

Because teacher VA is estimated using data from students in the same
schools in previous years, teachers will tend to have high VA estimates
when their students happened to do well in prior years. Regressing
changes in prior test scores on changes in teacher VA e↵ectively puts
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the same data on the left- and right-hand side of the regression, me-
chanically yielding a positive coe�cient. (CFR 2014d, p. 1)

CFR point to two potential sources of such “mechanical” e↵ects. First, some
teachers who teach grade-g students in t or t � 1 might have taught the same
cohorts of students previously, in grade g � 1 in t� 1 or t� 2 (or in grade g � 2
in t� 2 or t� 3). This could induce a positive correlation between the teachers’
e↵ectiveness and the students’ g � 1 scores – in e↵ect, these prior-year scores are
intermediate outcomes of the e↵ectiveness of the grade g teacher. Second, even
when teachers do not follow students across grades, a mechanical e↵ect could
arise from the fact that data from t � 2 is used both to measure the prior-year
achievement of t�1 students and to forecast the t�1 teachers’ VA. Any shock that
is common across grades in the school-year cell could create a positive correlation
between the measured VA of the t � 1 teachers and the t � 2 scores of the t � 1
students, biasing the placebo coe�cient upward.22

Column 3 of Table 2 presents an alternative placebo test that excludes all
mechanical e↵ects related to test score dynamics or VA measurement by removing
test scores entirely from the dependent variable. Here, I form a predicted score
for each student, X

it

�̂, using the same methods as in Column 2 but using only the
demographic variables – the students’ age and indicators for gender, ethnicity, free
lunch, special education, limited English, grade repetition, and for missing values
for each of these, along with class and school-year means – in X

it

. None of these
would be a↵ected by prior teachers’ e↵ectiveness or by school-level shocks. But
I find that the change in mean predicted VA is significantly associated with the
change in the mean predicted score based on these demographic characteristics
alone.23 This conclusively establishes that the placebo result cannot be attributed
to the mechanical explanations proposed by CFR (2015a). 24

So what does drive the placebo e↵ect? The data point to a third mechanical
explanation as an important factor. Recall that CFR-I’s explanatory variable is
constructed from predicted VA scores of teachers in t � 1 and t, based on the
residual scores of the teachers’ students in years other than t � 1 and t. If a
teacher is observed in only t � 1 or t, there is no other information on which to
base the prediction. CFR-I drop the teacher from the average Q

sgmt

and drop
the teacher’s students from the average Ā

sgmt

.
This sample selection can reintroduce student sorting into the quasi-experiment,

even if teacher switching is random. In both North Carolina and New York, more
advantaged students (those with higher prior scores, or with higher family income)

22Note that either dynamic would likely invalidate not just the placebo test but also CFR-I’s quasi-
experimental research design itself (Rothstein, 2016).

23The coe�cient, 0.035 (SE 0.009), is smaller here than in Column 2. The demographic variables
are less predictive of A⇤

it than is the full Xit vector. The decline in the coe�cient is exactly what one
would expect if �Qsgmt is correlated both with the demographic characteristics and with prior scores
conditional on demographics; see Altonji, Elder and Taber (2005).

24The online Appendix explores this issue further. While there is some evidence that “teacher follow-
ers” contribute to the e↵ect, the results are generally quite stable. See Table A8.
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tend to be assigned to higher VA teachers (see Appendix Table A7). So when
we lack a predicted VA score for a high (respectively, low) VA teacher, excluding
her from the VA average tends to reduce (increase) Q

sgmt

, while excluding her
students from the mean prior-year or end-of-year score tends to reduce (increase)
Ā

sgmt

. This pushes both �̂ and the placebo coe�cient upward relative to what
would be obtained were all teachers and classrooms included.
Recall from Section III.A that CFR-I present one specification that includes

these teachers, assigning them predicted VA scores equal to the grand mean.25

This is not an ad hoc imputation, but rather the score implied for these teachers
by the Empirical Bayes methodology. The VA prediction used in the quasi-
experimental analysis is the leave-two-out prediction based on the teacher’s ob-
served performance in years other than t � 1 and t, shrunken toward the grand
mean. For a teacher observed only in those years, there is no signal at all, so
shrinkage is complete and the best predictor (and the Empirical Bayes estimate)
is the grand mean µ̂

jt

= 0. In their Table 5, Column 2 (reproduced as Table
1, Column 4 here), CFR-I assign this grand mean to teachers observed in just a
single year, and include both the teachers and their students in the school-grade-
subject-year means.26

I use this approach to include all classrooms in the sample in Panel B of Table 2.
The placebo test coe�cients are uniformly smaller here, suggesting that sample
selection is an important contributor to the endogeneity identified in Panel A.27

The use of the grand mean for teachers missing leave-two-out VA predictions
relies on an assumption that teacher VA is independent across teachers within a
school. Indeed, this assumption is implicit in CFR-I’s entire quasi-experimental
analysis. Although CFR-I construct their predictions at the level of the individual
teacher, the relevant prediction for the quasi-experimental analysis is at the level
of the school-grade-year mean. If VA is not independent within schools, the
average of teacher-level EB predictions is not an unbiased prediction of the average
of the teachers’ true e↵ects.
In particular, if µ

j

is positively correlated among teachers at the same school,
the change in the average of teachers’ EB predictions overstates (in magnitude)
the EB prediction of the change in the average teacher’s VA, even if data is avail-
able for all teachers. Unbiased estimation of � would require shrinking teachers’
performance toward the school mean rather than toward the grand mean, and
using the school mean in place of the grand mean to impute VA predictions to
teachers missing leave-two-out VA information. Failure to do so creates downward
biases in both �̂ and the placebo test coe�cients in Table 2, Panel B.

25These teachers are included as well in CFR-II’s preferred quasi-experimental specifications, with a
sample excluding them used only for a specification check.

26Teachers observed in both t�1 and t but no other years also have missing leave-two-out predictions.
Across all their specifications, CFR-I always include these teachers, with predictions set equal to the
grand mean. The issue here concerns only those teachers observed in one year but not the other. CFR
do not explain the di↵erential treatment.

27Other specifications, not reported here, indicate that the significant coe�cients in Panel B are – in
contrast to the Panel A results – not entirely robust.
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But it is not clear that that this issue is important in practice. The intra-
class correlation of teacher VA is 0.2 or less. A correlation of this magnitude is
unlikely to cause serious problems if teachers are treated as independent within
schools. Rothstein (2016) explores alternative VA predictions (e.g., the school
mean) for the teachers with missing leave-two-out scores, consistent with di↵erent
assumptions about the correlation structure.
Finally, it is important to note that excluding teachers with missing VA, as in

most of CFR-I’s analysis and Panel A of Table 2, relies on auxiliary assumptions
as well. The needed assumption here is that there is no sorting of students
across classrooms within a school. Since evaluating the extent of such sorting
is the entire point of the exercise, it would be best not to assume it away in
estimating �. Without this assumption, however, the selected-sample estimate �̂

is biased toward 1. Moreover, it is clear from Table 2 that �Q

sgmt

is importantly
endogenous when computed from the CFR-I subsample. Panel B of Table 2
indicates that the problem is diminished, but perhaps not eliminated, when all
classrooms are included.

C. Quasi-Experimental Estimates Under A Selection on Observables Assumption

The failure of the placebo test strongly implies that the �̂ obtained from the
teacher switching analysis, at least as applied to CFR-I’s selected sample, is biased
upward. The predicted score specification in Table 2, Column 2, suggests that
the bias is at least 0.10 in the selected sample, though it may be smaller when all
classrooms are included.28 In Table 3, I explore several approaches to estimating
� without bias.
Panel A follows CFR-I in focusing on the selected subsample of classrooms with

non-missing teacher VA predictions. Given the placebo test results, I explore the
sensitivity of �̂ to the inclusion of controls for the change in student preparedness.
Column 1 repeats the specification from Table 1, Column 2. Column 2 adds the
change in students’ mean prior-year scores as a right-hand side variable.29 This
reduces the �̂ coe�cient to 0.933 (0.015).
Column 3 presents a specification that excludes the change in prior-year scores

but switches the dependent variable to the change in mean residual scores (i.e.,
to �Ā

sgmt

rather than �Ā

⇤
sgmt

). This is the specification proposed by CFR-I in
developing the quasi-experimental methodology (see their discussion on p. 2617),
though in their empirical implementation they use unadjusted scores on the basis

28Note that the bias may be larger than the coe�cients in Table 2, Column 2 if unobservables change
with observables – see footnote 23.

29CFR-I present one specification that controls for a cubic in the change in students’ mean prior-year
scores, in their Table 4, Column 3. This specification also controls for leads and lags of �Qsgmt, which
are constructed using data from t� 1 and t so may be endogenous, though coe�cients are not reported.
In the North Carolina sample, the coe�cient on the lead term is highly statistically significant. Taken
literally, this is a failed falsification test. But I prefer to exclude the leads and lags of �Qsgmt. The
result in Column 2 is substantively unchanged when I allow for a nonlinear e↵ect of the mean prior-year
score; I focus on the linear model for ease of presentation.
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of evidence, contradicted above, that changes across cohorts in observable char-
acteristics are orthogonal to �Q

sgmt

. The coe�cient here, 0.931, is quite similar
to that in Column 2. Column 4 uses the change in gain scores as the depen-
dent variable, as in Figure 3. This yields a somewhat smaller coe�cient, 0.889,
than in Columns 2 and 3. Note also that each of the methods for controlling for
pre-treatment observables yields a more precise estimate than in the unadjusted
specification in Column 1 – this added precision is the reason that many exper-
imental analyses control for baseline outcomes even when there is no evidence
that the randomization was unsuccessful.
Panel B presents estimates that use all classrooms, assigning teachers observed

in only a single year a VA prediction of zero. As noted in Section III.B, this relies
on di↵erent, but no less plausible, assumptions than do estimates that exclude
such classrooms. Table 1 shows that this simple change, even without controls,
reduces the �̂ coe�cient substantially (from 1.097 to 0.936 in North Carolina
data, or from 0.974 to 0.877 in CFR-I’s New York sample), and Table 2 showed
that the placebo test violation is smaller in this sample. Accordingly, I find that
the full-sample �̂ coe�cient is less sensitive to choices about how to control for
student preparedness. Across all four columns, it ranges between 0.83 and 0.90,
with standard errors around 0.02.30

The online Appendix (Table A8) presents several specifications aimed at testing
the robustness of the results to alternative methods of dealing with mechanical
relationships between �Q

sgmt

and the change in prior-year scores. Results are

quite robust. �̂ is near 1 when the selected sample is used without adjustments for
violations of the quasi-experimental design; near 0.93 when the selected sample is
used but prior scores are controlled; and 0.86 or a bit smaller when all classrooms
are included, with or without controls for additional sorting on observables. These
results are not driven by any of the dynamics that CFR (2015a) point to as
potential confounding factors. Rothstein (2016) presents additional specifications
exploring alternative prediction strategies, other than assigning the grand mean,
for the teachers excluded from CFR-I’s main sample.
CFR-I present one specification (CFR-I, Table 5, Column 4; reproduced here in

Appendix Table A5) that limits the sample to the less than one-third of school-
grade-subject-year cells where all of the teachers have non-missing VA predictions,
so the issue of sample selection and imputation does not arise. In both New York
and North Carolina, the point estimate is roughly similar to the the baseline
specification using all cells and including only classrooms with non-missing data.
This appears to suggest that sample selection is a non-issue. But these estimates
are quite imprecise, given the small sample. More important, CFR-I use a dif-
ferent specification here, including only year e↵ects where their preferred models
include school-by-year fixed e↵ects. Rothstein (2016) presents results of each

30The di↵erence between the result in Table 1 and that in Column 1 of Table 3 is that the former
reproduces CFR-I’s specification, which includes only year fixed e↵ects. Table 3 includes school-year
fixed e↵ects in each specification.
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specification.31

I conclude that the best estimate of � based on the quasi-experimental design,
after adjusting for exogeneity failures, is around 0.85. This is near the middle of
0.6-1 range suggested by Rothstein’s (2009) simulations, where CFR-I’s original
results pointed to the very top of that range. Moreover, it indicates a substantively
important amount of bias. If we assume that biases are uncorrelated with true
e↵ects, � = 0.85 implies that V (bj)

/V (µj) ⇡ 0.2. Negative correlations would imply
larger bias ratios – a correlation of -0.3 (Horvath, 2015) implies V (bj)

/V (µj) ⇡ 0.35.
As I discuss in Section V, even the smaller estimate is large enough to produce
a non-trivial misclassification rate (25%) in VA-based evaluations and to create
incentives for teachers to manipulate their assignments – by, e.g., refusing to teach
classes that will hurt their VA scores – under high-stakes evaluations.

IV. Long-Run E↵ects

The analysis thus far indicates that VA scores are moderately biased by student
sorting, with forecast bias around 15% and teacher-level bias of 20-35%. CFR-II’s
subsequent analysis of the e↵ects of teacher VA on students’ longer-run outcomes,
such as college graduation or earnings, is predicated on CFR-I’s conclusion of
unbiasedness. Accordingly, I revisit the CFR-II study here.
CFR-II present two types of analyses of longer-run outcomes. First, for all

of the outcomes they consider, they show “cross-class comparisons,” simple re-
gressions of class-level mean long-run outcomes on the teacher’s predicted VA.
Second, for a few outcomes, they also present quasi-experimental analyses akin
to those explored above. I reproduce both. I begin in Subsection IV.A with a
discussion of the identification problem and CFR-II’s observational strategy. I
then present, in Subsection IV.B, estimates of the long-run e↵ects of North Car-
olina teachers, focusing on the sensitivity to the selection of controls and to the
estimation strategy.

A. Methods

Following CFR-II, I focus on models for ⌧
j

, the reduced-form impact of a single
teacher j on her student’s long-run outcomes, not controlling for prior or subse-
quent teachers. CFR-II’s parameter of interest is the covariance between ⌧

j

and
the teacher’s test score impact, rescaled as m

j

⌘ µj
/�j where �

j

is the standard
deviation of µ

j

:

(4)  ⌘ cov (m
j

, ⌧

j

) ,

31Mansfield (2015) estimates �̂ = 0.832 when applying the CFR-I strategy to high school teachers’ VA
and limiting the sample to the no-missing-data subsample.
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Because m
j

has unit variance by construction, this is equivalent to the coe�cient
of a regression of ⌧

j

on m

j

. Importantly, while we are interested in the teacher’s
causal e↵ect on long-run outcomes,  is not a causal parameter (so does not
represent, for example, the e↵ect on long-run outcomes of interventions aimed at
raising teachers’ test score VA). Rather, it measures the value of VA scores as
proxies for teachers’ long-run impacts, which even with random assignment would
take many years to measure directly.
To estimate , CFR-II begin by estimating their VA model using the long-run

outcomes in place of end-of-year scores. Paralleling the earlier notation, let Y

⇤
i

represent the outcome for student i, and let Ȳ
jt

be the classroom mean residual
after regressing Y ⇤

i

against the VA model covariates, once again using only within-
teacher variation. As before, this residual reflects the teacher’s true e↵ect ⌧

j

, a
bias term b

Y

j

that is persistent within teachers, and terms reflecting non-persistent

sorting (⌫Y
jt

) and random variation (eY
jt

):

Ȳ

jt

= ⌧

j

+ b

Y

j

+ ⌫

Y

jt

+ e

Y

jt

.

CFR-II estimate  as the coe�cient of a regression of Ȳ
jt

on the standardized
predicted test score VA, m̂

jt

⌘ µ̂jt
/�µ,

(5) ̂ =
cov

�
m̂

jt

, Ȳ

jt

�

V (m̂
jt

)

Importantly, though CFR-II refer repeatedly to the inclusion of controls in this
analysis (and CFR’s Reply to this Comment refers to “controls in our OLS regres-
sions”), ̂ is always estimated via a bivariate regression; covariates are used only
to construct the residual long-run outcome Ȳ

jt

. This is the reverse of partitioned
regression, where the explanatory variable is residualized against covariates, and
the resulting estimate ̂ does not equal the coe�cient from an OLS regression of
Ȳ

jt

(or Y

⇤
i

) on m̂

jt

controlling for X

jt

. CFR (2015a) clarify the reason for this:
The parameter of interest here is the coe�cient of a bivariate regression of ⌧

j

on µ

j

, not the multiple regression coe�cient. If students sort to teachers on the
basis of ⌧

j

, the covariates X
jt

might capture some of this sorting, and the multiple
regression  coe�cient might understate the value of m

j

as a proxy for ⌧
j

.
When the exercise is understood in this way, it is clear that if µ

j

and ⌧

j

were
observed directly no exclusion restriction would be required for identification of
. But neither is observed, and we must rely on the estimates µ̂

jt

and Ȳ

jt

. This
requires assumptions.
First, µ̂

jt

must be forecast unbiased, so that the regression of ⌧
j

on m̂

jt

has the
same coe�cient as a regression of ⌧

j

on m

j

.32 This is CFR-II’s Assumption 1. As
discussed above, the evidence suggests that it does not hold.

32We actually require more: The VA forecast error, mj � m̂jt, must be orthogonal to the portion of
a teacher’s long-run impact that is not captured by her test score VA, ⌧j �mj.
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Second, Ȳ
jt

� ⌧

j

= b

Y

j

+ v

Y

jt

+ e

Y

jt

, the estimation error in a teacher’s long-run
impact, must be orthogonal to the teacher’s test score VA m̂

jt

, as otherwise the
substitution of the residual outcome Ȳ

jt

in place of the teacher’s causal e↵ect ⌧
j

would bias ̂.33 This assumption is problematic as well. Where CFR-I argued that
the bias in test score VA (b

j

) was likely to be minimal, CFR-II find a�rmative
evidence that teachers’ estimated long-run impacts are biased – that is, that

V

⇣
b

Y

j

⌘
> 0.34 In this case, the assumption requires that bY

j

be orthogonal to µ̂

jt

.

This is untestable, as bY
j

– reflecting sorting on unmeasured student and family
characteristics – is not observed. But the evidence discussed above that measured
test score VA is correlated with observed family characteristics suggests that it is
unlikely to hold. See Appendix Table A7, which shows that teachers with higher
predicted VA are assigned students with higher prior scores (included in the VA
model) and higher family incomes (not included).
To further illustrate this, Table 4 presents regressions of several student char-

acteristics on the predicted VA of the teacher. Between-school variation is of
particular importance, as student socioeconomic status – very strongly predictive
of long-run outcomes, but less predictive of annual test score growth – is much
more heavily sorted across schools than across classrooms within schools. Column
1 pools within- and between-school variation; in Column 2, school fixed e↵ects
are included so only within-school variation identifies the predicted VA coe�-
cient; and in Column 3, the regressions are estimated on school means to capture
between-school variation. Schools with higher average predicted VA teachers have
much higher prior year test scores, lower free lunch shares, and higher predicted
student outcomes. Within schools, sorting is less dramatic, but teachers with
higher predicted VA are statistically significantly less likely to be assigned minor-
ity students, students receiving free lunches, and students with lower prior-year
scores or predicted end-of-year scores. It thus appears likely that unobserved fam-
ily characteristics are similarly correlated with µ̂

jt

, and that the CFR-II strategy
confounds the association between ⌧

j

and µ

j

with a positive bias term coming
from the association of bY with µ̂

jt

.
Below, I show that ̂ is is quite sensitive to the inclusion of controls for di↵er-

ences in observed student characteristics across teachers. This strongly suggests
that ̂ is biased when estimated without controls. But controls for student and
family characteristics X̄

j

change the estimand from  to



X

⌘
cov

�
µ

j

, ⌧

j

| X̄
j

�

V

�
µ

j

| X̄
j

�
.

33This is implicit in CFR-II’s Assumption 2, which in my notation is that cov
�
Ȳjt � m̂jt, m̂jt

�
= 0.

34See, e.g., CFR-II, p. 2638: “[T]he orthogonality condition required to obtain unbiased forecasts
of teachers’ earnings VA–that other unobservable determinants of students’ earnings are orthogonal to
earnings VA estimates–does not hold in practice.” See also the the online appendix to CFR-II. In order
for long-run VA to be biased but test score VA unbiased, all sorting must be based on unmeasured
characteristics that are predictive of long-run outcomes but not predictive of test scores. See the related
discussion in Ballou (2012).
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This may di↵er from . In particular, if parents and teachers are able to discern
teachers’ long-run impacts and if they sort on that basis, this would create a causal
channel running from ⌧ to X̄

j

and imply that 
X

6= .35 Under this condition, it
is exceedingly unlikely for cov

�
b

Y

, µ

j

�
= 0, as is required for identification of  –

this would require that the sorting depend only on the part of teachers’ long-run
e↵ects that is not predictable based on their short run e↵ects, which there is no
reason to expect. Thus, even though 

X

may not equal , evidence that ̂

X

di↵ers from ̂ strongly suggests, though does not entirely prove, that ̂ is biased
relative to .
CFR-II also present quasi-experimental analyses of teachers’ long-run impacts

analogous to those used to estimate forecast bias. I show below that these are
as sensitive to the inclusion of controls for observables as are the corresponding
short-run quasi-experimental estimates.

B. Results

The North Carolina data do not have measures of college enrollment, teen
childbearing, or adult earnings, as examined by CFR-II. In their place, I focus on
five outcomes that can be measured in high school records: Whether the student
graduated from high school; whether she stated on a high school exit survey that
she planned to attend college after graduation; whether she planned specifically to
attend a four-year college; her high school grade point average; and her high school
class rank. These are more proximate than CFR-II’s outcomes, which mostly
measure post-high-school experiences. They also vary in their availability; I focus
on cohorts for which they are available for most students. Students who do not
appear in the North Carolina high school records are excluded from this analysis,
while those who drop out of high school are assigned as non-college-bound.
Columns 2-4 of Table 5 present observational estimates of , from CFR-II in

Panel A and from the North Carolina sample in Panel B. The closest alignment
between my long-run outcomes and those examined by CFR is for college at-
tendance: I observe self-reported plans as of high school, where CFR-II observe
actual enrollment at age 20. The basic observational analysis, in Column 2, in-
dicates that a one standard deviation increase in teacher VA is associated with
a 0.82 percentage point increase in the teacher’s impact on college enrollment
in New York, and with a 0.60 percentage point increase in the teacher’s impact
on college enrollment plans (and a 1.35 percentage point increase in the impact
on four-year college enrollment plans) in North Carolina. I also find positive
e↵ects on high school graduation (0.34 percentage point), on high school GPAs
(0.022 GPA points), and on class rank (0.54 percentage point). All are highly
statistically significant.
Columns 3 and 4 vary the controls used in estimating long-run VA Ȳ

jt

, contin-
uing to estimate (5) without controls. In Column 2, the residualization uses just

35If students and parents sort to teachers who are known to have high µj , but there is no sorting on
the basis of ⌧j � µj (perhaps because it is unknown), then X = .
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the covariates from the test score VA model. In Column 3, CFR-II add parental
characteristics, drawn from tax returns. These characteristics are not available in
the North Carolina data, so I do not repeat these estimates. In New York, their
inclusion reduces the estimates of  by 10-20%, suggesting that bias in Ȳ

jt

that
derives from the simpler specification is correlated with µ̂

jt

. Column 4 replaces
the parental characteristics with students’ two-years-ago test scores. These esti-
mates are similar to those in Column 3 in New York; in North Carolina, they are
mostly smaller than in Column 2, though one (four year college plans) is larger.

Columns 5 and 6 return to the baseline covariates in the construction of Ȳ
jt

,
but add controls to the second-stage regression of Ȳ

jt

on m̂

jt

. Column 5 uses all
of the covariates from the test score VA model, averaged at the teacher-year level;
Column 6 further adds teacher-level means of these (aggregating over all of the
years that the teacher is observed). All of the ̂

X

coe�cients are much smaller
than the corresponding ̂ estimates in Column 2, by 14-45%.36

There is every reason to expect that adding the additional family characteristics
used in Column 3 (which are not available in the North Carolina data) would lead
to additional diminution of the estimated e↵ects. The pattern of results, with
sensitivity both to the choice of X

it

variables in the construction of long-run-
outcome VA (Columns 2-4) and to the inclusion of X̄

jt

variables in the second-
stage (Columns 5-6), casts doubt on the interpretation of any of the observational
estimates as reflecting . While this cannot be ruled out – the reduced coe�cients
in Columns 5-6 of Table 5 could be attributable to di↵erences between  and 

X

produced by sorting on the sole basis of the portion of teachers’ long-run e↵ects
that is orthogonal to their test score e↵ects – there is little basis for confidence
in the observational model’s exclusion restrictions.

Table 6 turns to quasi-experimental estimates of . Column 2 reports estimates
of the association between the change in mean VA, �Q

sgmt

, and the change in
mean unadjusted outcomes, �Ȳ

⇤
sgmt

, as examined by CFR-II. In their preferred
specifications, and in contrast to CFR-I, CFR-II include all classrooms in their
school-grade-subject-year means, assigning teachers with missing VA predictions
the grand mean. I follow that here. Estimates are mostly smaller than the original
observational estimates in Table 5, Column 2, and all are much less precise;
nevertheless, four of the five are statistically significant. Column 3 adds a control
for the change in the mean prior-year score at the school-grade level. Each of the
point estimates falls substantially, by at least one-third (and, in the case of the
GPA and class rank e↵ects, by over 60%), and none of the adjusted coe�cients are
significant. When adjusted for observables, the quasi-experimental design o↵ers
no evidence that teachers’ VA is associated with their long-run e↵ects.

36Responding to an early draft of this comment, CFR (2014c) pointed out that estimates like those
in Column 5 and 6 might be biased downward relative to X by measurement error in test score VA. I
obtain nearly identical results with a 2SLS estimator that adjusts for measurement error, indicating that
this is not an important issue. See Rothstein (2014).
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V. Discussion

The first result of my investigation is that essentially all of the empirical results
reported by CFR-I and CFR-II from their analysis of New York City students
are reproduced, nearly exactly, in data from the North Carolina public schools.
Given the dramatic di↵erence in settings, this is remarkable.
But further investigation indicates that CFR’s analysis cannot support their

conclusions. When I probe CFR-I’s test for forecast bias in measured teacher VA,
I find that teacher switching does not create a valid quasi-experiment in North
Carolina. Measured teacher turnover is associated with changes in student qual-
ity, as measured by the students’ prior-year scores or just by their demographic
characteristics. When changes in observed student quality are controlled, CFR-
I’s key coe�cient �̂ is around 0.9, precisely estimated, and highly significantly
di↵erent from one.
The apparent endogeneity of teacher switching appears to be driven, at least

in part, by CFR-I’s exclusion of some teachers and classrooms from their quasi-
experimental sample. When I include all classrooms, the evidence for endogeneity
is weaker, but the forecast bias coe�cient falls to around 0.85 and is much less
sensitive to the inclusion of controls.
The � parameter identified by CFR-I’s quasi-experiment is only indirectly re-

lated to the quantity of interest, which is the magnitude of biases in individual
teachers’ VA scores, V (b

j

). If one assumes that these biases are orthogonal to

teachers’ causal e↵ects, my preferred estimate of �̂ = 0.85 implies that the vari-
ance of the portion of student sorting bias that is permanent within teachers (and
thus impossible to remove by averaging over several years) is about 18% of the
variance of teachers’ causal e↵ects. �̂ = 0.9 would correspond to a variance ratio
of 11%. These are roughly in the middle of the range that Rothstein’s (2009;
2010) simulations established as consistent with the data.37 Thus, while CFR-I’s
strategy narrows the plausible range, it does not support the conclusion that the
true value is at one end of that range. Moreover, teacher-level bias is larger if
biases are negatively correlated with causal e↵ects (as found by Horvath, 2015;
Angrist et al., 2015a). With a correlation of -0.3, teacher-level bias is 24% with
� = 0.9 and 32% with � = 0.85.
To illustrate the potential importance of biases of this magnitude, assume away

sampling error – imagine that we observe µ̃
j

⌘ µ

j

+b

j

directly, without error, but
that we cannot distinguish the two components. Further suppose that teachers’
true e↵ects and the biases in their VA scores are both normally distributed. With
� = 0.85 and corr (µ

j

, b

j

) = 0, over one-quarter of teachers with µ̃

j

in the bottom
ten percent will have true causal e↵ects µ

j

that are outside the bottom decile.38

37CFR-I’s VA model is most similar to Rothstein’s (2010) “VAM2.” A variance ratio of 11% corre-
sponds almost exactly to the estimate in Table 7, Panel B of Rothstein (2010) (i.e., to a ratio of the
standard deviation of the bias to that of the true e↵ect of 0.33), while a variance ratio of 18% is quite
close to that in Panel C.

38In reality, sampling error will also play a role. If decisions are made based on the average of
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If corr (µ
j

, b

j

) = �0.3, the misclassification rate rises to over one-third.
This suggests that policies that use VA scores as the basis for personnel deci-

sions will be importantly confounded by di↵erences across teachers in the students
that they teach. Teachers with unusual assignments will be rewarded or punished
for this under VA-based evaluations. This limits the scope for improving teacher
quality through VA-based personnel policies (Rothstein, 2015). It will also dis-
tort teacher assignments as teachers react to the resulting incentive, potentially
depressing educational e�ciency and o↵setting any teacher quality improvements.
Section IV revisits CFR-II’s estimates of the association between teacher VA

and teacher e↵ects on students’ long-run outcomes. These were in many ways
the most important portion of the CFR results, as they suggested that retaining
low-VA teachers has extremely important consequences for students’ long-run out-
comes – that “good teachers create substantial economic value, and VA measures
are useful in identifying them” (CFR 2012).
But these results turn out to depend implausible assumptions. CFR-II’s “con-

trols” for student observables were implemented in a non-standard way. The con-
ditions required for their estimates to be consistent are quite implausible. More-
over, the estimated long-run e↵ects of high-VA teachers are much smaller when
observable di↵erences in students across teachers are controlled directly, both
in observational and quasi-experimental analyses. In the more credible quasi-
experimental estimates, point estimates are uniformly smaller (more negative)
when controls for changes in student observables are controlled, and none are
statistically significantly di↵erent from zero.
As the North Carolina data have only limited information about family back-

grounds and longer-run outcomes, I cannot fully explore teachers’ long-run e↵ects.
But my results are su�cient to re-open the question of whether high-VA elemen-
tary teachers have substantial causal e↵ects on their students’ long-run outcomes,
and even more so to call into question the specific magnitudes obtained by CFR-
II’s methods.
Across both investigations, where I am able to estimate the specifications that

CFR report, I obtain substantively identical results in the North Carolina sample.
CFR have confirmed (in personal communication) that many of my key results
obtain in their data, as have Bacher-Hicks, Kane and Staiger (2014) in Los An-
geles. It thus seems likely the remainder of my results would generalize across
samples as well. The results are also robust to specifications that address a num-
ber of objections that CFR (2014e; 2015b) raised in response to an initial draft
of this comment, as discussed in the online Appendix. Rothstein (2016) presents
additional specifications and robustness analyses.
I conclude that the quasi-experimental methodology proposed by CFR-I, while

a major advance in the field, does not support their substantive conclusions. The

three annual measures of µ̃j , each with reliability 0.4 (roughly corresponding to estimates of VA score
reliability), nearly half of teachers identified as in the bottom decile will have true µjs outside of it.
Misclassification rates are of course identical for teachers apparently in the top decile.
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available evidence suggests that VA scores – in New York, North Carolina, Los
Angeles, and likely elsewhere – are moderately biased by student sorting, with
a magnitude su�cient to create substantial misclassification rates in VA-based
evaluation systems. There is, moreover, no strong basis for conclusions about the
long-run e↵ects of high- vs. low-VA teachers, which in the most credible estimates
are not distinguishable from zero.

REFERENCES

Adler, Moshe. 2013. “Findings vs. Interpretation in ‘The Long-Term Impacts
of Teachers’ by Chetty et al.” Education Policy Analysis Archives, 21(10).

Altonji, Joseph G, Todd E Elder, and Christopher R Taber. 2005. “Se-
lection on Observed and Unobserved Variables: Assessing the E↵ectiveness of
Catholic Schools.” Journal of Political Economy, 113(1): 151–184.

American Institutes for Research. 2015. “2013-14 Growth Model for Ed-
ucator Evaluation.” Technical Report, prepared for the New York State Ed-
ucation Department. Retrieved from https://www.engageny.org/resource/

technical-report-growth-measures-2013-14 on Sept. 25, 2015.

Angrist, Joshua, Peter Hull, Parag Pathak, and Christopher Walters.
2015a. “Leveraging Lotteries for Value-Added: Bias Reduction vs. E�ciency.”
Unpublished manuscript.

Angrist, Joshua, Peter Hull, Parag Pathak, and Christopher Walters.
2015b. “Leveraging Lotteries for Value-Added: Testing and Estimation.” Un-
published manuscript.

Bacher-Hicks, Andrew, Thomas J. Kane, and Douglas O. Staiger. 2014.
“Validating Teacher E↵ect Estimates Using Changes in Teacher Assignments
in Los Angeles.” National Bureau of Economic Research Working paper 20657.

Ballou, Dale. 2012. “Review of ”The Long-Term Impacts of Teachers: Teacher
Value-Added and Student Outcomes in Adulthood”.” National Education Pol-
icy Center, Boulder, CO,, Downloaded Aug. 3, 2015 from http://nepc.

colorado.edu/thinktank/review-long-term-impacts.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2012. “Great Teach-
ing.” Education Next, 12(3).

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014a. “Measuring
the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates.”
American Economic Review, 104(9): 2593–2632.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014b. “Measuring
the Impacts of Teachers II: Teacher Value-Added and Student Outcomes in
Adulthood.” American Economic Review, 104(9): 2633–2679.



26 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014c. “Notes on
Imputations and Controls for Observables.” Unpublished manuscript.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014d. “Prior Test
Scores Do Not Provide Valid Placebo Tests of Teacher Switching Research
Designs.” Unpublished manuscript. Downloaded October 13, 2014 from http:

//obs.rc.fas.harvard.edu/chetty/va_prior_score.pdf.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014e. “Re-
sponse to Rothstein (2014) on ”Revisiting the Impacts of Teachers”.” Un-
published manuscript. Downloaded from http://obs.rc.fas.harvard.edu/

chetty/Rothstein_response.pdf on October 13, 2014.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2014f. “Stata
Code for Implementing Teaching-Sta↵ Validation Technique.” Unpublished
manuscript. Downloaded July 21, 2014, from http://obs.rc.fas.harvard.

edu/chetty/cfr_analysis_code.zip.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2015a. “Measur-
ing the Impacts of Teachers: Response to Rothstein (2014).” Unpublished
manuscript. Downloaded July 27, 2015 from http://obs.rc.fas.harvard.

edu/chetty/va_response.pdf.

Chetty, Raj, John N Friedman, and Jonah E Rocko↵. 2015b. “Mea-
suring the Impacts of Teachers: Response to Rothstein (2014).” Unpublished
manuscript. Obtained from AER.

Clotfelter, Charles T, Helen F Ladd, and Jacob L Vigdor. 2006. “Teacher-
Student Matching and the Assessment of Teacher E↵ectiveness.” Journal of
Human Resources, 41(4): 778–820.

Deutsch, Jonah. 2013. “Proposing a Test of the Value-Added Model Using
School Lotteries.” Unpublished manuscript.

Guarino, Cassandra M., Mark M. Reckase, and Je↵rey M. Wooldridge.
2012. “Can Value-Added Measures of Teacher Education Performance Be
Trusted?” The Education Policy Center at Michigan State University Working
paper 18.

Horvath, Hedvig. 2015. “Classroom Assignment Policies and Implications for
Teacher Value-Added Estimation.” Unpublished manuscript.

Kane, Thomas J., and Douglas O. Staiger. 2008. “Estimating Teacher Im-
pacts On Student Achievement: An Experimental Evaluation.” National Bu-
reau of Economic Research working paper 14607.

Kane, Thomas J., Daniel F. McCa↵rey, Trey Miller, and Douglas O.
Staiger. 2013. “Have We Identified E↵ective Teachers? Validating Measures



VOL. VOL NO. ISSUE REVISITING THE IMPACTS OF TEACHERS 27

of E↵ective Teaching Using Random Assignment.” Bill & Melinda Gates Foun-
dation Research Paper, Seattle, Washington.

Mansfield, Richard. 2015. “Teacher Quality and Student Inequality.” Journal
of Labor Economics, 33(3 (pt. 1)): 751–788.

Rothstein, Jesse. 2009. “Student Sorting And Bias In Value-Added Estimation:
Selection On Observables And Unobservables.” Education Finance and Policy,
4(4): 537–571.

Rothstein, Jesse. 2010. “Teacher Quality in Educational Production: Track-
ing, Decay, and Student Achievement.” Quarterly Journal of Economics,
125(1): 175–214.

Rothstein, Jesse. 2014. “Revisiting the Impacts of Teachers.” Unpublished
manuscript, October.

Rothstein, Jesse. 2015. “Teacher Quality Policy When Supply Matters.” Amer-
ican Economic Review, 105(1): 100–130.

Rothstein, Jesse. 2016. “Supplement to ”Revisiting the Impact of Teach-
ers”.” Manuscript. Available at http://eml.berkeley.edu/

~

jrothst/CFR/

supplement_mar2016.pdf.

Rothstein, Jesse, and William J. Mathis. 2013. “Review of Two Culminating
Reports from the MET Project.” National Education Policy Center, Boulder,
CO.

SAS Institute. 2015. “Tennessee Department of Education: Tech-
nical Documentation for 2015 TVAAS Analyses.” Version 1.0. Re-
trieved from http://tn.gov/assets/entities/education/attachments/

tvaas_technical_documentation_2015.pdf on Sept. 26, 2015.

Value-Added Research Center. undated. “Academic Growth over Time:
Technical Report on the LAUSD School-Level AGT Model, Academic
Year 2012-2013.” Los Angeles Unified School District. Retrieved from
http://achieve.lausd.net/cms/lib08/CA01000043/Centricity/domain/

414/documents/AGT%20Informative%20for%202010-2011.pdf on Sept. 26,
2015.

Appendix

Reproduction of CFR-I Results

Appendix Tables A1-A7 present CFR-I’s results from New York in parallel with
reproductions, using CFR’s (2014f) code, in data from North Carolina.
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Table A1 presents student-level summary statistics (from CFR-I’s Table 1,
Panel A). Free lunch and minority shares are lower in North Carolina than in New
York, but (surprisingly) the recorded English language learner share is higher. In
North Carolina, this variable and special education status are missing from 2009
onward; summary statistics pertain only to those with non-missing data.

Table A2 presents CFR-I’s Table 2. Autocovariances are similar in the two
samples for elementary English teachers, but higher in the North Carolina sample
for elementary math teachers. Similarly, in English the two samples yield nearly
identical estimates of the standard deviation of teachers’ VA, net of sampling
error, but in math the North Carolina sample yields an estimate about one-fifth
larger than does CFR-I’s sample.

Figure A1 displays the autocorrelations graphically. In both samples, the au-
tocorrelations are higher in math than in reading; they are also higher in each
subject in North Carolina than in CFR-I’s sample. Where CFR-I found that
the autocorrelations stabilize at lags longer than 7, the North Carolina sample
suggests that they continue to decline out to the end of the sample.

Table A3 presents results from CFR-I’s Table 3. (I do not reproduce their
Column 3, as their code archive does not make clear how their dependent variable
is constructed.) Results are broadly similar. In Column 2, my coe�cient (0.009)
is significantly di↵erent from zero where theirs (0.002) is not, but both are small
in magnitude. Table A4 presents estimates from CFR-I’s Table 4. Many of
these are presented elsewhere as well; they are included here for completeness.
I do not reproduce CFR-I’s Column 5, as my North Carolina sample excludes
middle school grades. Again, all estimates are strikingly similar between the two
samples. Table A5 presents estimates from CFR-I’s Table 5. Estimates are quite
similar, despite the higher share of teachers assigned predicted VA scores of zero
in Column 2 in my sample (27.4%) than in CFR-I’s (16.4%). Rothstein (2016)
presents additional relevant results.

Table A6 reproduces CFR-I’s Table 6. Notably, the North Carolina results
indicate negative forecast bias in rows 1-6. But results are generally quite similar.

Finally, Table A7 presents selected estimates from Table 2 in CFR-I’s online
appendix. These are coe�cients of regressions of student characteristics on their
teachers’ predicted VA. Raw regression coe�cients are attenuated because the
predicted VA measures are shrunken, and thus have lower variance than the
teachers’ true e↵ects. CFR-I multiply their coe�cients by 1.56, the average ratio
of the standard deviation of true e↵ects to the standard deviation of predicted
e↵ects. In North Carolina, this ratio is 1.36, so coe�cients in Panel B are multi-
plied by this. Estimates are broadly similar, though there is perhaps less sorting of
high-prior-achievement students to high-predicted-VA teachers in North Carolina
than in CFR-I’s sample. One notable di↵erence is that minority students have
lower-predicted-VA teachers, on average, than non-minority students in North
Carolina, but not in New York.
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Additional specifications

Responding to an early draft of this comment, CFR (2014d) suggested that
the failure of the placebo test might be due to so-called “mechanical” e↵ects –
to factors that influence both prior year scores and measured teacher VA (but
perhaps not actual teacher e↵ectiveness). Specifically, CFR note that data from
t � 2 is used both to predict the VA of teachers in t � 1 and t, and thus to
compute �Q

sgmt

, and for the prior-year scores of t�1 students. This could create
a spurious correlation between �Q

sgmt

and the change in prior year scores. In
Table 2 I found that the placebo test failed even when only non-test outcomes were
used to measure student preparedness. This demonstrates that test dynamics
cannot possibly account for the result. Nevertheless, in Table A8 I explore several
alternative specifications aimed at removing the specific mechanical e↵ects that
CFR suggest.
Row 1 presents baseline estimates, repeated from Tables 2 and 3. Row 2 is

identical but with standard errors clustered at the school level; this increases
standard errors by about one-third.39

CFR (2014d; 2015a) suggest that one source of potential mechanical e↵ects is
teachers who teach the same cohort of students in multiple years as they progress
across grades. If a teacher taught in grade g�1 in t�2 and then taught the same
students in grade g in t � 1, then the both the average VA in grade g in t � 1
(and thus �Q

sgmt

) and the average lagged scores of grade g students in t� 1 will
reflect her e↵ectiveness.40 CFR (2014d) propose addressing this by instrumenting
for the change in VA, �Q

sgmt

, with a modified measure that excludes teachers
who taught g � 1 in t� 2 or t� 1. This is implemented by setting predicted VA
for these teachers to zero.
In North Carolina, less than 4% of teacher mobility consists of teachers follow-

ing students. Not surprisingly, when I modify �Q

sgmt

to exclude teachers who
taught grade g�1 in t�2 or t�1, or who taught grade g�2 in t�3 or t�2, the
modification makes little di↵erence. The modified version of �Q

sgmt

is correlated
0.96 with the original version, and the first-stage coe�cient is 0.98. Estimates of
my key specifications are shown in Row 3 of Table A8. When classrooms with
missing VA scores are excluded, the association with the change in prior-year
scores is reduced but remains significant, and the � estimate is hardly changed.
Note that the no-follower instrument involves setting some teachers’ VA predic-
tions to the grand mean, and thus relies on the same assumption of within-school

39CFR-I’s main results cluster at the school-by-cohort level. School-level clustering is more general.
Moreover, I present below IV specifications with school-year fixed e↵ects; it is computationally di�cult
to cluster these at the school-cohort level.

40This is a source of a mechanical association in the di↵erenced specification only if the teacher leaves
the school or grade in t; otherwise, her VA does not contribute to the t� 1 to t change. Note also that
“following” is a problem for the quasi-experimental analysis as well as for the placebo test. The quasi-
experimental analysis is designed to test whether VA scores accurately forecast the impact of grade-g
teachers on their students’ learning in grade-g; if a portion of the �̂ coe�cient reflects contributions that
the same teachers made to students when they were in grade g � 1, this would need to be controlled in
order to isolate the causal e↵ect of interest.
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independence as does the inclusion of teachers with missing leave-two-out predic-
tions, also set to the grand mean. There is thus no set of assumptions that can
justify the subsample specifications in columns 1-3. When all classrooms are in-
cluded, in columns 4-6, the placebo test coe�cient is no longer significant, but the
� coe�cient from a specification without controls falls to match that in the spec-
ification with controls. I thus conclude that “follower” teachers might contribute
slightly to the placebo test violation, but that recognition of this phenomenon
has no e↵ect on my conclusions regarding forecast bias.41

CFR (2014d; 2015a) also suggest that school-year-subject shocks could create
mechanical, spurious failures of the placebo test: A positive shock to a school in
t� 2 will raise both the predicted VA of the school’s t� 1 teachers and the prior-
year scores of the t � 1 students. This would be absorbed by school-year e↵ects
already included in the main specifications if it were common across subjects, but
subject-specific shocks would not be. CFR (2014d; 2015a) propose to address it
by including school-subject-year fixed e↵ects. I implement this in Row 4. This
halves the number of degrees of freedom, leaving only three or fewer observations
per cell. Standard errors are larger here. The quasi-experimental estimates in
Columns 2 and 3 rise, and I cannot reject � = 1 in Column 3. However, in the
preferred sample that includes all classrooms (assigning VA predictions of zero to
teachers with missing data), the additional fixed e↵ects make little di↵erence at
all, and I decisively reject � = 1. Row 5 presents a specification with both school-
subject-year e↵ects and instrumentation for follower teachers. The main placebo
test coe�cient is insignificant here, but my preferred forecast bias coe�cient (in
column 6) is unchanged, at 0.89, and remains significantly di↵erent from 1.
The inclusion of school-subject-year e↵ects is not the only way to address the

possibility that common shocks would a↵ect both teachers’ VA predictions and
students’ lagged scores. An alternative, more consistent with the overall research
design, is to exclude t�2 data from the predictions of teacher VA in years t�1 and
t. “Leave-three-out” VA predictions, ensure that there is zero overlap between the
scores used to construct the VA scores and those used for the dependent variable
in the placebo test, as the latter is based only on data from t� 2 and t� 1. Row
6 presents estimates using these leave-three-out VA predictions. They are quite
similar to the baseline estimates, if anything indicating larger selection problems
and smaller quasi-experimental estimates. Row 7 combines the leave-three-out
VA scores with the no-follower IV, with quite similar results
CFR (2015a) point out that with serial correlation in the school-year-subject

shocks, a shock in t�3 would influence leave-three-out VA scores and be correlated

41I have also explored specifications analogous to those in Columns 3 and 6 where I instrument
for the change in mean prior-year scores with a modified version that excludes students of teacher
“followers.” This has no e↵ect on the results. When CFR (2015a) estimate the specification in Column
1, the coe�cient is insignificantly di↵erent from zero, though this coe�cient is significant in Los Angeles
(Bacher-Hicks, Kane and Staiger, 2014). This may be the sole substantively important di↵erence in
empirical results across the three samples. In any event, when CFR (2015a) use the “no followers”

design for the main quasi-experimental specification (as in Column 2), they estimate �̂ = 0.92 and reject
the null hypothesis that � = 1. This is quite similar to my results.
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with the shock to prior-year scores for the t� 1 cohort, potentially biasing leave-
threee-out placebo test. Such serial correlation would create a similar bias in
the CFR-I quasi-experiment, as t � 2 shocks enter into VA scores and would be
similarly correlated with the shock to t� 1 scores, and indeed one would expect
the leave-three-out strategy to reduce bias.
Nevertheless, rows 8 and 9 present estimates that use leave-four-out and leave-

five-out VA scores that exclude not just t�2 but also t�3 and (in Row 9) t�4 data
from the calculations. Results are extremely stable. In row 10, I take this to the
logical extreme, using only data from t + 1 and thereafter to forecast (backcast)
VA in t� 1 and t. This specification, proposed by CFR (2014d), should entirely
eliminate any mechanical e↵ect of the form that CFR (2014d; 2015a) propose,
but estimates are basically unchanged – if anything, the forecast bias coe�cient
falls from the baseline specification (�̂ = 0.83 vs. 0.86).
Taking the various specifications in Table A8 together, along with the non-

test placebo analysis in Table 2, the evidence is clear that mechanical e↵ects
cannot account for the results. Rothstein (2016) presents additional sensitivity
analyses, focusing on the sample selection created by the exclusion of classrooms
with missing leave-two-out teacher VA scores. Results are presented that vary
the procedure for assigning VA predictions to these teachers and that limit the
sample to cells with no excluded classrooms.
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(panel!A)!or!school5year!(panel!B)! fixed!effects;!coefficients!and!standard!errors!(clustered!at! the!
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Panel A. Changes in actual scores

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

C
ha

ng
es

 in
 s

co
re

s

−0.1 −0.05 0 0.05 0.1

−0.1 −0.05 0 0.05 0.1

Changes in mean teacher value-added
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(0.005)
Coef. = 0.004
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Figure 4. Effects of Changes in Teaching Staff on Scores across Cohorts

Notes: This figure plots changes in average test scores across cohorts versus changes in aver-
age teacher VA across cohorts, generalizing the event study in Figure 3 to include all changes 
in teaching staff. Panel A is a binned scatterplot of changes in actual scores versus changes in 
mean VA, corresponding to the regression in column 1 of Table 4. Panel B is a binned scat-
terplot of changes in predicted scores based on parent characteristics versus changes in mean 
VA, corresponding to the regression in column 4 of Table 4. See notes to Table 4 for details 
on variable definitions and sample restrictions. Both panels are plotted using the core sam-
ple collapsed to school-grade-subject-year means, as described in Section VC. To construct 
these binned scatterplots, we first demean both the x- and y-axis variables by school year to 
eliminate any secular time trends. We then divide the observations into 20 equal-size groups (vingtiles) based on their change in mean VA and plot the means of the y variable within each 
bin against the mean change in VA within each bin, weighting by the number of students in 
each  school-grade-subject-year cell. The solid line shows the best linear fit estimated on the 
underlying microdata using a weighted OLS regression as in Table 4. The coefficients show 
the estimated slope of the best-fit line, with standard errors clustered at the  school-cohort level 
reported in parentheses.

6 Score = _st +  1.030 * 6 VA
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Figure'2'
Bin+Scatter'Plot'of'Change'in'Average'Teacher'Predicted'VA'and'Change'in'Average'

Prior'Year'Score'
'

'
!
Notes:!Figure!is!identical!to!Figure!1,!Panel!B,!except!that!the!variable!plotted!on!the!vertical!axis!is!
the!mean!cohort5over5cohort!change! in!prior5year!(rather!than!end5of5year)!scores! in! the!vingtile!
group.!Sample!and!regression!equation!correspond!to!Table!2,!Column!1,!Panel!A.!

6 Score = _st +  0.144 * 6 VA
                           (0.021)
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Figure'3'
Bin+Scatter'Plot'of'Change'in'Average'Teacher'Predicted'VA'and'Change'in'Average'

Gain'Score'
'

'
!
Notes:!Figure!is!identical!to!Figure!1,!Panel!B,!except!that!the!variable!plotted!on!the!vertical!axis!is!
the!mean! cohort5over5cohort! change! in! gain! scores! (the! student5level! growth! in! scores! from! the!
end! of! one! year! to! the! end! of! the! next)! in! the! vingtile! group.! Sample! and! regression! equation!
correspond!to!Table!3,!Column!4,!Panel!A.!
!
!

6 Score = _st +  0.889 * 6 VA
                           (0.015)
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Dependent variable: Δ Score Δ Score Δ Score 
(Predicted)

Δ Score    
(all 

students)
(1) (2) (3) (4)

Source: T4C1 T4C2 T4C4 T5C2
Change in mean teacher predicted VA 0.974 0.957 0.004
 across cohorts (0.033) (0.034) (0.005)

Change in mean teacher predicted VA 0.877
across cohorts (with zeros) (0.026)

Year fixed effects X X
School x year fixed effects X X
Grades 4 to 8 4 to 8 4 to 8 4 to 8
# of school x grade x subject x year cells 59,770 59,770 59,323 62,209

Change in mean teacher predicted VA 1.097 1.030 0.008
 across cohorts (0.022) (0.021) (0.011)

Change in mean teacher predicted VA 0.936
across cohorts (with zeros) (0.022)

Year fixed effects X X
School x year fixed effects X X
Grades 3 to 5 3 to 5 3 to 5 3 to 5
# of school x grade x subject x year cells 79,466 79,466 54,663 91,221

Notes: Panel A is taken from the indicated Tables and Columns of CFR (2014a); 
Panel B is estimated using the same variable construction and specifications in the 
North Carolina sample. The dependent variable in each column is the year‐over‐
year change in the mean of the specified variable in the school‐grade‐subject‐year 
cell. In Columns 1, 2, and 4, this variable is the end‐of‐year test score. In Column 3, 
it is the fitted value from a regression of end‐of‐year scores on parental 
characteristics taken from tax data (Panel A) or on parental education indicators 
(Panel B). In Columns 1‐3, teachers observed only in a single year are excluded 
from the school‐grade‐subject‐year mean predicted VA, and their students are 
excluded from the dependent variable. In Column 4, these teachers are assigned 
predicted VA of zero and are included, and their students are included in the 
dependent variable. See notes to CFR (2014a), Tables 4 and 5 for additional details 
about the specifications. Standard errors are clustered by school‐cohort.

Table 1. Reproduction of CFR (2014a) teacher switching quasi‐experimental 
estimates of forecast bias

Panel A: CFR (2014a)

Panel B: North Carolina reproduction



Table 2. Assessing the quasi‐experiment via placebo tests

Dependent variable: Δ prior year score
All VA model 
controls

Non‐test VA model 
controls

(1) (2) (3)

Change in mean teacher predicted VA 0.144 0.105 0.035
 across cohorts (0.021) (0.017) (0.009)

# of school x grade x subject x year cells 79,466 78,186 79,466

Change in mean teacher predicted VA 0.092 0.034 0.001
 across cohorts (all classrooms) (0.022) (0.017) (0.010)

# of school x grade x subject x year cells 90,701 88,949 90,203

Δ predicted score given:

Notes: Specifications in Panels A and B are identical to those in Table 1, Columns 2 and 4, 
respectively, but for changes in the dependent variable. In Column 1, this is the year‐over‐year 
change in mean prior year scores in the school‐grade‐subject‐year cell. In Columns 2‐3, it is the year‐
over‐year change in mean predicted end of year scores in the cell. In Column 2, the predictions use 
all of the VA model controls, while in Column 3 only the non‐test controls (indicators for 
race/ethnicity, gender, special education, free lunch status, limited english, and grade repetition; 
missing value indicators for each of these; and class‐ and school‐year‐level means of each) are used. 
Prediction coefficients are identified only from within‐teacher variation. All specifications include 
school‐year fixed effects, and standard errors are clustered by school‐cohort. 

Panel A: Excluding classrooms with missing teacher VA 
predictions

Panel B: Including classrooms with missing teacher VA 
predictions



Table 3. Adjusting the quasi‐experiment for non‐random assignment

Change in 
residual scores

Change in 
gain scores

(1) (2) (3) (4)

Change in mean teacher predicted VA 1.030 0.933 0.931 0.889
 across cohorts (0.021) (0.015) (0.014) (0.015)

Change in mean prior year score 0.675
(0.004)

# of school x grade x subject x year cells 79,466 79,466 78,186 79,466

Change in mean teacher predicted VA 0.904 0.860 0.894 0.832
 across cohorts (0.022) (0.017) (0.015) (0.017)

Change in mean prior year score 0.536
(0.009)

# of school x grade x subject x year cells 91,221 90,701 88,949 90,692

Panel A: Without classrooms missing teacher VA 
prediction

Panel B: Including all classrooms

Change in scoresDependent variable: 

Notes: Specifications in Panels A and B are identical to those in Table 1, Columns 2 and 4, 
respectively, but for changes noted here. In Column 3, the dependent variable is the the year‐over‐
year change in mean residual scores, as defined in equation (2), in the school‐grade‐subject‐year 
cell. In Column 4, it is the year‐over‐year change in mean gain scores, defined as the within‐student 
difference between the end‐of‐year score and the prior‐year score.  Column 2 includes a control 
for the change in the mean score in the prior year. All estimates include school‐year fixed effects, 
and standard errors are clustered at the school‐cohort level.



Table 4. Association between teacher predicted VA and student characteristics

School level
Overall Within school
(1) (2) (3)

Prior‐year test score 0.063 0.028 0.394
(0.005) (0.002) (0.047)

N 357,036 357,036 1,621

Free lunch ‐0.022 ‐0.015 ‐0.106
(0.003) (0.001) (0.031)

N 201,440 201,440 1,470

Minority student ‐0.006 ‐0.009 0.035
(0.003) (0.001) (0.035)

N 357,036 357,036 1,621

Predicted end‐of‐year 0.049 0.021 0.304
test score (0.004) (0.002) (0.046)

N 349,322 349,322 1,621

Predicted college 0.0083 0.0023 0.065
enrollment (0.0008) (0.0003) (0.008)

N 349,322 349,322 1,621

Class level

Notes: Each entry presents the coefficient from a separate regression of the 
indicated variable on the teacher's leave‐one‐out predicted VA score, rescaled 
into teacher‐level standard deviation units (Columns 1‐2), or on the school‐level 
mean of this (Column 3). Column 2 includes school fixed effects. Regressions are 
weighted by the class or school size and standard errors are clustered at the 
school level.



Table 5. Observational analyses of teachers' long‐run impacts

# of classes

(1) (2) (3) (4) (5) (6)

College at age 20 (%) 4,170,905 0.82 0.71 0.74
(0.07) (0.06) (0.09)

College quality at age 20 ($) 4,167,571 298.6 265.8 266.2
(20.7) (18.3) (26.0)

Earnings at age 28 ($) 650,965 349.8 285.6 309.0
(91.9) (87.6) (110.2)

Variables used for within‐teacher residualization of outcomes
  Baseline VA controls X X X

Parent chars. X
Twice lagged scores X

Graduate high school (%) 2,318,646 0.34 0.27 0.24 0.22
(0.04) (0.05) (0.04) (0.04)

Plan college (%) 1,748,911 0.60 0.57 0.41 0.36
(0.07) (0.08) (0.06) (0.06)

Plan 4‐year college (%) 1,748,876 1.35 1.45 0.87 0.73
(0.09) (0.11) (0.08) (0.08)

GPA (4 pt. scale) 1,191,964 0.022 0.009 0.018 0.016
(0.002) (0.002) (0.002) (0.002)

Class rank (100=top) 1,190,117 0.54 0.29 0.43 0.36
(0.06) (0.07) (0.05) (0.05)

Variables used for within‐teacher residualization of outcomes
  Baseline VA controls X X X X

Twice lagged scores X
Controls in observational regression

Baseline (classroom means) X X
Teacher means X

Panel A: CFR‐II

Panel B: North Carolina replication

Notes: See notes to CFR‐II, Table 2. Columns 2‐4 report coefficients of regressions of residualized 
outcomes on teachers' predicted VA, varying the covariates used in residualizing the outcomes within 
teachers and controlling only for the subject to which the VA score pertains (math or reading) in the 
second stage regression. Columns 5 and 6 add classroom and teacher means of the VA covariates to 
the second stage regression. Standard errors are clustered at the school‐cohort level. Column 1 shows 
the number of student observations used in the Column‐2 regressions.

Teacher‐year level regressions



Table 6. Quasi‐experimental estimates of effects on long‐run outcomes

No controls
Prior score 
control

(1) (2) (3)

College at age 20 (%) 33,167 0.86
(0.23)

College quality at age 20 ($) 33,167 197.6
(60.3)

Graduate HS (%) 50,508 0.38 0.26
(0.17) (0.17)

Plan college (%) 36,508 0.61 0.41
(0.24) (0.24)

Plan 4‐year college (%) 36,508 0.45 0.09
(0.27) (0.26)

GPA (4 pt scale) 21,836 0.014 0.004
(0.007) (0.006)

Class rank 21,836 0.42 0.16
(0.21) (0.19)

Number of school x 
grade x subject x year 

cells

Quasi‐experimental estimates

Notes: Each entry in columns 2‐3 represents a separate regression of the year‐over‐year 
change in school‐grade‐subject‐year mean outcomes (indicated on left) on the change in 
mean predicted teacher VA. Each regression includes year fixed effects and is clustered 
at the school‐cohort level. Column 3 also controls for the change in mean prior‐year 
scores in the cohort. Following CFR‐II, predicted VA is set to zero for teachers with 
missing predicted VA and for those who would otherwise be in the top 1% of the 
predicted VA distribution.

Panel A: CFR‐II

Panel B: North Carolina
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Appendix Table A1. Reproduction of CFR‐I, Table 1 (Panel A only)
Summary statistics for sample used to estimate value‐added model

Mean SD N Mean SD N
(1) (2) (3) (4) (5) (6)

Class size (not student weighted) 27.3 5.6 391,487 22.2 5.0 357,036
No. of subject‐years per student 5.6 3.0 1,367,051 4.5 1.7 1,607,198
Test score (SD) 0.2 0.9 7,639,288 0.0 1.0 7,215,581
Female 50.8% 7,639,288 49.7% 7,215,581
Age (years) 11.4 1.5 7,639,288 10.5 0.9 7,213,590
Free lunch elig. 79.6% 5,021,163 44.9% 3,926,246
Minority (Black/Hispanic) 71.6% 7,639,288 34.2% 7,215,581
English language learner 4.8% 7,639,288 8.5% 5,996,113
Special education 1.9% 7,639,288 2.3% 5,478,335
Repeating grade 1.7% 7,639,288 1.4% 7,215,581
Matched to parents in tax data 87.7% 7,639,288

CFR‐I, Table 1 North Carolina sample

Notes: See notes to CFR‐I, Table 1. In New York, free lunch eligibility is available only for 1999‐2009. In 
North Carolina, it is available only for 1999‐2006, and English language learner and special education  
information are available only 1997‐2008. 



Appendix Table A2. Reproduction of CFR (2014a), Table 2
Teacher Value‐Added Model Parameter Estimates

Elem. School Elem. School Elem. School Elem. School
English Math English Math
(1) (2) (3) (4)

Lag 1 0.013 0.022 0.012 0.032
(0.0003) (0.0003) (0.0002) (0.0002)
[0.305] [0.434] [0.359] [0.551]

Lag 2 0.011 0.019 0.011 0.028
(0.0003) (0.0003) (0.0002) (0.0003)
[0.267] [0.382] [0.317] [0.485]

Lag 3 0.009 0.017 0.009 0.026
(0.0003) (0.0004) (0.0002) (0.0003)
[0.223] [0.334] [0.281] [0.442]

Lag 4 0.008 0.015 0.008 0.023
(0.0004) (0.0004) (0.0002) (0.0004)
[0.190] [0.303] [0.250] [0.407]

Lag 5 0.008 0.014 0.008 0.022
(0.0004) (0.0005) (0.0002) (0.0004)
[0.187] [0.281] [0.239] [0.384]

Lag 6 0.007 0.013 0.007 0.021
(0.0004) (0.0006) (0.0003) (0.0005)
[0.163] [0.265] [0.218] [0.360]

Lag 7 0.006 0.013 0.007 0.019
(0.0005) (0.0006) (0.0003) (0.0005)
[0.147] [0.254] [0.202] [0.333]

Lag 8 0.006 0.012 0.006 0.018
(0.0006) (0.0007) (0.0003) (0.0006)
[0.147] [0.241] [0.201] [0.310]

Lag 9 0.007 0.013 0.006 0.017
(0.0007) (0.0008) (0.0003) (0.0007)
[0.165] [0.248] [0.184] [0.299]

Lag 10 0.007 0.012 0.006 0.017
(0.0008) (0.0010) (0.0004) (0.0008)
[0.153] [0.224] [0.174] [0.285]

Total SD 0.537 0.517 0.561 0.544
Individual Level SD 0.506 0.473 0.542 0.495
Class+Teacher Level SD 0.117 0.166 0.144 0.225
Estimates of Teacher SD

Lower Bound Based on Lag 1 0.113 0.149 0.110 0.180
Quadratic Estimate 0.124 0.163 0.118 0.192

CFR North Carolina sample

Panel A: Autocovariance and Autocorrelation Vectors

Panel B: Within‐Year Variance Components

Notes: See notes to CFR (2014a), Table 2.  In Panel A, each entry includes the autocovariance, the 
standard error of that covariance (in parentheses), and the autocorrelation (in brackets) of average test 
score residuals across years, within teachers.



Appendix Table A3. Reproduction of CFR (2014a), Table 3
Estimates of Forecast Bias Using Parent Characteristics and Lagged Scores

Dep. Var.:

Score in Year 
t

Pred. Score 
using Parent 

Chars.

Score in 
Year t

Pred. Score 
using Year t‐2 

Score
(1) (2) (3) (4)

Teacher VA 0.998 0.002 0.996 0.022
(0.0057) (0.0003) (0.0057) (0.0019)

Parent Chars. Controls X
Observations 6,942,979 6,942,979 6,942,979 5,096,518

Teacher VA 1.021 0.009 0.022
(0.004) (0.001) (0.002)

Parent Chars. Controls
Observations 5,142,680 3,584,736 3,014,172

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 3; replication follows their methods. Dependent 
variables are residualized against the covariates in the VA model, at the individual level, 
before being regressed on on the teacher's leave‐one‐out predicted VA, controlling for 
subject. In Column 2, the second stage regression is estimated on classroom‐subject‐
level aggregates; reported observation counts correspond to the number of student‐
year‐subject‐level observations represented in these aggregates. Standard errors are 
clustered at the school‐cohort level.



Appendix Table A4. Reproduction of CFR (2014a), Table 4
Quasi‐Experimental Estimates of Forecast Bias

Dependent Variable: Δ Score Δ Score Δ Score Δ 
Predicted 
Score

Δ Other 
Subj. 
Score

Δ Other 
Subj. 
Score

(1) (2) (3) (4) (5) (6)

Change in mean teacher predicted VA 0.974 0.957 0.950 0.004 0.038 0.237
 across cohorts (0.033) (0.034) (0.023) (0.005) (0.083) (0.028)

Year Fixed Effects X X X
School x Year Fixed Effects X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X
Other‐Subject Change in Mean Teacher VA X X

Grades 4 to 8 4 to 8 4 to 8 4 to 8 Middle 
Sch.

Elem. 
Sch.

No. of School x Grade x Subject x Year Cells 59,770 59,770 46,577 59,323 13,087 45,646

Change in mean teacher predicted VA 1.097 1.030 0.994 0.008 0.202
 across cohorts (0.022) (0.021) (0.017) (0.011) (0.016)

Year Fixed Effects X X
School x Year Fixed Effects X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X
Other‐Subject Change in Mean Teacher VA X
Grades 3 to 5 3 to 5 3 to 5 3 to 5 3 to 5
No. of School x Grade x Subject x Year Cells 79,466 79,466 58,385 54,663 76,548

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 4. Panel B replicates CFR's estimates using the North Carolina 
sample. 



Appendix Table A5. Reproduction of CFR (2014a), Table 5
Quasi‐Experimental Estimates of Forecast Bias: Robustness Checks

Specification: Teacher 
Exit Only

Full 
Sample

<25% 
Imputed VA

0%    Imputed 
VA

Dependent Variable: Δ Score Δ Score Δ Score Δ Score
(1) (2) (3) (4)

Change in mean teacher predicted VA 1.045 0.877 0.952 0.990
 across cohorts (0.107) (0.026) (0.032) (0.045)

Year Fixed Effects X X X X
Number of School x Grade x Subject x Year Cells 59,770 62,209 38,958 17,859
Pct. of Observations with Non‐Imputed VA 100.0 83.6 93.8 100.0

Change in mean teacher predicted VA 1.174 0.936 1.100 1.081
 across cohorts (0.040) (0.022) (0.035) (0.043)

Year Fixed Effects X X X X
Number of School x Grade x Subject x Year Cells 79,466 91,221 34,495 23,445
Pct. of Observations with Non‐Imputed VA 100.0 72.6 94.4 100.0

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 5. Panel B replicates CFR's estimates using the North Carolina 
sample. 



Appendix Table A6. Reproduction of CFR (2014a), Table 6
Comparisons of Forecast Bias Across Value‐Added Models

Correlation 
with 

baseline VA 
estimates

Quasi‐
experimental 
estimate of 
bias (%)

Correlation 
with 

baseline VA 
estimates

Quasi‐
experimental 
estimate of 
bias (%)

(1) (2) (3) (4)
1. Baseline 1.000 2.58 1.000 ‐9.69

(3.34) (2.19)
2. Baseline, no teacher FE 0.979 2.23 0.981 ‐6.07

(3.50) (2.22)
3. Baseline, with teacher experience 0.989 6.66

(3.28)
4. Prior test scores 0.962 3.82 0.976 ‐9.13

(3.30) (2.18)
5. Student's lagged scores in both subjects 0.868 4.83 0.955 ‐4.88

(3.29) (2.17)
6. Student's lagged score in same subj. only 0.787 10.25 0.923 ‐3.09

(3.17) (2.13)
7. Non‐score controls 0.662 45.39 0.683 31.00

(2.26) (1.56)
8. No controls 0.409 65.58 0.522 46.41

(3.73) (1.32)

CFR‐I North Carolina

Notes: See notes to CFR‐I, Table 6. CFR (2014a) do not provide code for the row 3 specification. 
Negative bias share coefficients in column 4 reflect estimated forecast coefficients above 1.



Appendix Table A7: Replication of CFR (2014a), Appendix Table 2
Differences in Teacher Quality Across Students and Schools

(1) (2) (3) (4) (5) (6) (7)

Lagged test score 0.0122 0.0123
(0.0006) (0.0006)

Special educ. student ‐0.003
(0.001)

Parent income ($10,000s) 0.00084 0.00001
(0.00013) (0.00011)

Minority (black/hispanic) student ‐0.001
(0.001)

School mean parent income ($10,000s) 0.0016
(0.0007)

School fraction minority 0.003
(0.003)

N 6,942,979 6,942,979 6,094,498 6,094,498 6,942,979 6,942,979 6,942,979

Lagged test score 0.0077
(0.0004)

Special ed 0.0055
(0.0006)

Minority (black/hispanic) student ‐0.0028
(0.0012)

School fraction minority 0.0054
(0.0042)

N 5,142,680 5,142,680 5,142,680 5,142,680

Dependent variable: Teacher value‐added

Panel A: CFR (2014a), Appendix Table 2

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Appendix Table 2. Panel B reports coefficients from applying CFR's 
code to the North Carolina sample. CFR multiply their reported coefficients by 1.56 to offset the 
average shrinkage of the dependent variable. The corresponding factor in the North Carolina sample 
(using CFR‐I's calculation) is 1.36, and coefficients in Panel B are multiplied by that.



Appendix	Table	A8.	Assessing	potential	mechanical	contributions	to	the	placebo	test	failure

Dependent	variable

No	
controls

With	control	
for	Δ	prior	
year	score

No	
controls

With	control	
for	Δ	prior	
year	score

(1) (2) (3) (4) (5) (6)
1 0.14 1.03 0.93 0.09 0.90 0.86

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2 0.14 1.03 0.93 0.09 0.90 0.86

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
3 0.08 1.00 0.95 0.03 0.87 0.87

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
4 0.12 1.06 0.97 0.06 0.91 0.89

(0.04) (0.04) (0.02) (0.04) (0.04) (0.03)
5 0.05 1.03 0.99 -0.02 0.87 0.89

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
6 0.17 1.03 0.92 0.12 0.91 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
7 0.12 1.01 0.93 0.07 0.88 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
8 0.16 1.02 0.91 0.13 0.90 0.84

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
9 0.15 1.02 0.91 0.13 0.89 0.83

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
10 0.14 0.99 0.89 0.12 0.88 0.82

(0.03) (0.04) (0.02) (0.04) (0.04) (0.03)

Notes:	Specifications	in	Row	1	correspond	to	Table	2,	Column	1	(Cols.	1	and	4);	Table	3,	Column	1	
(Cols.	2	and	5);	and	Table	3,	Column	2	(Cols.	3	and	6).	In	each	case,	Columns	1-3	correspond	to	the	
Panel	A	specification	in	the	earlier	table,	and	Columns	4-6	to	the	Panel	B	specification.	Successive	
rows	modify	the	specification.	In	Rows	2-9,	standard	errors	are	clustered	at	the	school	level.	In	Row	3,	
the	change	in	mean	predicted	teacher	VA	in	the	school-grade-subject-year	cell	is	instrumented	with	a	
variable	constructed	similarly	but	with	predicted	VA	set	to	zero	for	teachers	who	have	ever	previously	
taught	the	same	cohorts.	Row	4	presents	OLS	estimates	with	school-year-subject	fixed	effects,	while	
row	5	reports	IV	estimates	of	the	same	specification	using	the	non-following	teacher	instrument.	In	
Rows	6-9,	teacher	VA	predictions	are	constructed	using	only	data	from	before	t-2	(rows	6	and	7),	t-3	
(row	8),	or	t-4	(row	9).		In	Row	10,	only	data	from	after	t	is	used.	Row	7	applies	the	IV	specification	
from	Row	3	to	the	model	from	row	6,	using	leave-3-out	VA	predictions	for	non-follower	teachers.		
Italicized	coefficients	are	significantly	different	from	the	null	hypothesis	(zero	in	Columns	1	and	4;	one	
in	Columns	2,	3,	5,	and	6).

Δ	End-of-Year	Score

Baseline

Cluster	on	school

Using	leave-three-out	
teacher	VA	predictions

IV	setting	VA	of	following	
teachers	to	zero
School-year-subject	FEs

Using	leave-four-out	
teacher	VA	predictions
Using	leave-five-out	
teacher	VA	predictions
Using	leave-past-out	
teacher	VA	predictions

Δ	End-of-Year	ScoreΔ	Prior	
Year	
Score

Δ	Prior	
Year	
Score

School-year-subject	FEs,	IV

Leave-three-out,	IV

Including	all	classroomsExcluding	classrooms	without	VA	
predictions



Appendix	Table	B1.	Assessing	potential	mechanical	contributions	to	the	placebo	test	failure

Dependent	variable

No	
controls

With	control	
for	Δ	prior	
year	score

No	
controls

With	control	
for	Δ	prior	
year	score

(1) (2) (3) (4) (5) (6)
1 0.14 1.03 0.93 0.09 0.90 0.86

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2 0.14 1.03 0.93 0.09 0.90 0.86

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
3 0.08 1.00 0.95 0.03 0.87 0.87

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
4 0.12 1.06 0.97 0.06 0.91 0.89

(0.04) (0.04) (0.02) (0.04) (0.04) (0.03)
5 0.05 1.03 0.99 -0.02 0.87 0.89

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
6 0.17 1.03 0.92 0.12 0.91 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
7 0.12 1.01 0.93 0.07 0.88 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
8 0.16 1.02 0.91 0.13 0.90 0.84

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
9 0.15 1.02 0.91 0.13 0.89 0.83

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
10 0.14 0.99 0.89 0.12 0.88 0.82

(0.03) (0.04) (0.02) (0.04) (0.04) (0.03)

Notes:	Specifications	in	Row	1	correspond	to	Table	2,	Column	1	(Cols.	1	and	4);	Table	3,	Column	1	
(Cols.	2	and	5);	and	Table	3,	Column	2	(Cols.	3	and	6).	In	each	case,	Columns	1-3	correspond	to	the	
Panel	A	specification	in	the	earlier	table,	and	Columns	4-6	to	the	Panel	B	specification.	Successive	
rows	modify	the	specification.	In	Rows	2-9,	standard	errors	are	clustered	at	the	school	level.	In	Row	3,	
the	change	in	mean	predicted	teacher	VA	in	the	school-grade-subject-year	cell	is	instrumented	with	a	
variable	constructed	similarly	but	with	predicted	VA	set	to	zero	for	teachers	who	have	ever	previously	
taught	the	same	cohorts.	Row	4	presents	OLS	estimates	with	school-year-subject	fixed	effects,	while	
row	5	reports	IV	estimates	of	the	same	specification	using	the	non-following	teacher	instrument.	In	
Rows	6-9,	teacher	VA	predictions	are	constructed	using	only	data	from	before	t-2	(rows	6	and	7),	t-3	
(row	8),	or	t-4	(row	9).		In	Row	10,	only	data	from	after	t	is	used.	Row	7	applies	the	IV	specification	
from	Row	3	to	the	model	from	row	6,	using	leave-3-out	VA	predictions	for	non-follower	teachers.		
Italicized	coefficients	are	significantly	different	from	the	null	hypothesis	(zero	in	Columns	1	and	4;	one	
in	Columns	2,	3,	5,	and	6).

Δ	End-of-Year	Score

Baseline

Cluster	on	school

Using	leave-three-out	
teacher	VA	predictions

IV	setting	VA	of	following	
teachers	to	zero
School-year-subject	FEs

Using	leave-four-out	
teacher	VA	predictions
Using	leave-five-out	
teacher	VA	predictions
Using	leave-past-out	
teacher	VA	predictions

Δ	End-of-Year	ScoreΔ	Prior	
Year	
Score

Δ	Prior	
Year	
Score

School-year-subject	FEs,	IV

Leave-three-out,	IV

Including	all	classroomsExcluding	classrooms	without	VA	
predictions



Appendix	Table	B2.	Assessing	sensitivity	of	results	to	the	imputation	model

Grand	
mean

School	
mean

Missing	
mean

Missing	mean	
at	school

(1) (2) (3) (4) (5)

Change	in	mean	teacher 1.030 0.904 0.915 0.933 0.911
predicted	VA (0.021) (0.022) (0.022) (0.022) (0.021)

Change	in	mean	teacher 0.144 0.092 0.134 0.084 0.128
predicted	VA (0.021) (0.022) (0.023) (0.023) (0.022)

Change	in	mean	teacher 0.933 0.860 0.850 0.892 0.847
predicted	VA (0.015) (0.017) (0.017) (0.017) (0.017)

Change	in	mean	student 0.675 0.536 0.535 0.536 0.535
prior	year	score (0.004) (0.009) (0.009) (0.009) (0.009)

Notes:	Specifications	in	column	1,	panels	A-C	are	identical	to	those	in	Table	1,	Column	2;	
Table	2,	Column	1;	and	Table	3,	Column	2,	respectively.	Successive	columns	include	all	
classrooms	in	the	dependent	and	independent	variables,	varying	the	VA	prediction	
assigned	to	teachers	who	are	excluded	in	column	1.	In	column	2,	these	teachers	are	
assigned	the	grand	mean	of	zero.	In	Column	3,	the	prediction	is	based	on	the	shrunken	
leave-two-out	mean	at	the	same	school.	In	Column	4,	it	uses	the	shrunken	leave-two-out	
mean	among	all	teachers	with	missing	VA	predictions.	In	column	5,	it	uses	the	shrunken	
leave-two-out	mean	among	all	teachers	at	the	school	with	missing	VA	predictions.	All	
specifications	include	school-year	fixed	effects.	N=79,466	school-grade-subject-year	cells	
in	Column	1;	91,221	in	Columns	2-5	in	Panel	A;	and	90,701	in	Columns	2-5,	Panels	B-C.

Including	all	classrooms,	assigning	to	teachers	
with	missing	VA	predictions:

Excluding	
classrooms	
missing	

teacher	VA	
predictions

Panel	A:	Quasi-experimental	models	without	controls

Panel	B:	Models	for	change	in	prior-year	scores

Panel	C:	Models	for	change	in	end-of-year	scores,	with	
controls	for	change	in	prior-year	scores



Appendix	Table	B3.	Robustness	of	CFR-I,	Table	5's	robustness	results
Quasi-Experimental	Estimates	of	Forecast	Bias:	Robustness	Checks

(1) (2) (3) (4) (5) (6) (7) (8)

Change	in	mean	teacher 1.174 1.080 0.936 0.904 1.100 0.965 1.081 0.918
predicted	VA (0.040) (0.044) (0.022) (0.022) (0.035) (0.040) (0.043) (0.051)

Year	fixed	effects X X X X
School-year	fixed	effects X X X X
Number	of	School	x	Grade	x	
Subject	x	Year	Cells 79,466 79,330 91,221 91,221 34,495 34,495 23,445 23,445

Change	in	mean	teacher 0.296 0.226 0.175 0.093 0.199 0.064 0.177 0.033
predicted	VA (0.039) (0.043) (0.023) (0.022) (0.033) (0.038) (0.040) (0.047)

Change	in	mean	teacher 0.981 0.928 0.853 0.859 0.978 0.926 0.973 0.899
predicted	VA (0.030) (0.029) (0.019) (0.017) (0.028) (0.031) (0.035) (0.041)

Change	in	mean	student 0.650 0.675 0.497 0.537 0.611 0.608 0.610 0.583
prior	year	score (0.004) (0.005) (0.009) (0.009) (0.006) (0.007) (0.007) (0.009)

Panel	B:	Models	for	change	in	prior-year	scores

Panel	C:	Models	for	change	in	end-of-year	scores,	with	controls	for	
change	in	prior-year	scores

Notes:	See	notes	to	CFR	(2014a),	Table	5.	Columns	1,	3,	5,	and	7	in	Panel	A	reproduce	results	from	
that	table.	Even-numbered	columns	add	school-year	fixed	effects.	Panel	B	changes	the	dependent	
variable,	while	Panel	C	adds	a	control	for	the	change	in	the	prior-year	score.

Teacher	Exit	
Only

Full	Sample <25%	Imputed	
VA

0%	Imputed	VA

Panel	A:	Quasi-experimental	models	without	controls


