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Abstract

Chetty, Friedman, and Rockoff (2014a, 2014b) study value-added

(VA) measures of teacher effectiveness. CFR (2014a) exploits teacher

switching as a quasi-experiment, concluding that student sorting cre-

ates negligible bias in VA scores. CFR (2014b) finds VA scores are

useful proxies for teachers’ effects on students’ long-run outcomes. I

successfully reproduce each in North Carolina data. But I find that

the quasi-experiment is invalid, as teacher switching is correlated with

changes in student preparedness. Adjusting for this, I find moderate

bias in VA scores, perhaps 10-35% as large, in variance terms, as teach-

ers’ causal effects. Long-run results are sensitive to controls and cannot

support strong conclusions.
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This paper revisits the analysis and conclusions of a pair of recent pa-
pers in the American Economic Review that use data from New York City
school records and tax filings to examine central questions about value-added
(hereafter, VA) models of teacher effectiveness.1

The first paper (Chetty et al., 2014a; hereafter, CFR-I) attempts to mea-
sure bias in VA scores, interpreted as estimates of teachers’ casual effects.
Teachers’ VA scores may be biased if the observed student characteristics in-
cluded as controls – most notably prior scores – fail to fully absorb the unmea-
sured determinants of student-teacher matches, which often depend on parent
requests or teacher specializations (Rothstein, 2010). CFR-I exploits teacher
switches – events where one teacher exits or enters a school or grade – as
plausibly exogenous changes in the quality of teachers to which students are
exposed, and concludes that any biases are minimal.

The second paper (Chetty et al., 2014b; hereafter CFR-II) investigates
whether a teacher’s VA score is a useful proxy for her effect on longer-run out-
comes, including high school graduation, college enrollment, and adult earn-
ings. CFR-II concludes that high-VA teachers have dramatically better effects
on all of these outcomes, suggesting that replacing a low VA teacher with
an otherwise similar teacher with a higher VA score would bring substantial
benefits for students’ long-run success.

I revisit these questions in data from North Carolina.2 Using CFR’s meth-
ods and drawing on their programs (CFR 2014f), I successfully reproduce all
of the key results of each paper. Further investigation, however, indicates
that neither North Carolina nor New York data support CFR’s substantive
conclusions regarding VA bias or teachers’ long-run effects.

I focus on CFR-I, as CFR-II relies on its conclusion that VA scores are
unbiased. Figure 1, Panel A reproduces CFR-I’s Figure 4A, which illustrates
CFR-I’s key result. It is a “binned scatterplot” of the cohort-over-cohort change
in mean student test scores at the school-grade-subject level (on the vertical

1The district is unnamed in the papers. One of the authors, Raj Chetty, confirmed the
district’s identity in his expert testimony in the Vergara v. California trial.

2Other responses to CFR-I and CFR-II include Ballou (2012) and Adler (2013).
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axis) against the change in mean predicted VA of the teachers in the school-
grade-subject cell (on the horizontal axis), after residualizing each against
school-year indicators. CFR-I estimate “forecast bias” (which I define more
carefully below) as one minus the slope of this relationship. In the New York
data, the estimated slope is 0.957 and the standard error is 0.034. Forecast
unbiasedness cannot be rejected. Panel B shows the same figure as estimated
from the North Carolina sample. The picture is quite similar, with a slope of
1.030 (S.E. 0.021). Given the substantial differences between New York City
and North Carolina, the close correspondence is remarkable. Other results are
also successfully reproduced.

When I investigate further, however, I find that teacher switching does not
create a valid quasi-experiment. The treatment – the change in the average VA
of the teaching staff in a school-grade cell from one year to the next – is not
as good as randomly assigned but rather is correlated with pre-determined
student characteristics that are predictive of outcomes. Figure 2 illustrates
this. It is identical to Figure 1B, except that the vertical axis now plots the
change in students’ mean scores in the year prior to encountering the teachers
whose VA scores are used to construct the horizontal axis. If the change in
teacher VA were randomly assigned, the slope here should be zero. But in fact
the slope is 0.144, with a standard error of 0.021.3

While the slope in Figure 2 is much smaller than in Figure 1B, it is sig-
nificantly and substantively greater than zero. CFR (2015a) have confirmed
this result in the New York data, as have Bacher-Hicks et al. (2014) in Los
Angeles. Moreover, the result is not specific to test scores – I also reject a
zero slope when I use on the vertical axis predictions of students’ end-of-year
scores based only on non-test, demographic characteristics of students such as
free lunch status, race, and ethnicity (see Table 2, below).4

The association between VA changes and changes in student preparedness
across cohorts may bias quasi-experimental estimates like those in Figure 1

3If the apparently influential first and last points are excluded, the slope is 0.116 (0.035).
4This result disproves CFR’s (2015a) and Bacher-Hicks et al.’s (2014) speculation that

the placebo test violation in Figure 2 is due to “mechanical” factors related to the use of
test scores in constructing VA scores. See Section 3.2 and Appendix B.
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relative to the causal effect of improving teacher VA, understating forecast
bias. When I modify the quasi-experimental analysis to control for changes in
student preparedness, the key coefficient declines notably and becomes statis-
tically distinguishable from one. Figure 3 replaces the end-of-year scores used
to measure student outcomes in Figure 1 with the change in students’ scores
from the end of the prior grade. These gain scores difference away factors that
are beyond the current-year teacher’s control, so better capture learning – and
the teacher’s contribution – than do unadjusted end-of-year scores. The slope
in Figure 3 is 0.889 (0.015), significantly and substantively less than one. This
is quite robust – across a variety of specifications that control for observed
changes in student preparedness in various ways, the key coefficient is never
higher than 0.93, and the confidence interval always excludes 1.

Further exploration shows that the association shown in Figure 2 is not
primarily due to true endogeneity of teacher switching (as would occur, for ex-
ample, if schools in gentrifying neighborhoods attract higher-VA recruits than
those in declining neighborhoods), but rather is mostly an artifact of CFR-
I’s sample construction, which excludes a non-random subset of classrooms.
When I reconstruct the analysis using all classrooms, following one of CFR-I’s
robustness checks, the placebo test coefficients are smaller and less robust, and
the estimated slope of end-of-year scores with respect to changes in VA is both
lower (0.904 in the Figure 1 specification) and less sensitive to the inclusion of
controls for student preparedness.5

Rothstein’s (2009) simulations suggested that plausible hypotheses about
the amount of endogeneity in teacher VA scores imply that the prediction
coefficient estimated by CFR-I should be between 0.6 and 1. My preferred
estimates are around 0.85, very much in the middle of that range. Thus,
rather than ruling out forecast bias in teachers’ VA scores, the CFR-I quasi-
experiment demonstrates that forecast bias is non-zero – not as large as might

5The inclusion of all classrooms requires imputing expected VA scores to teachers who
lack them. My imputations follow those used by CFR-I and CFR-II. Both excluding class-
rooms and including them with imputed VA scores require untestable assumptions, discussed
below. Appendix B explores robustness to alternative imputations, resting on different as-
sumptions.
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have been feared, but nevertheless potentially important.
The relationship between forecast bias and the magnitude of the actual

biases in teachers’ VA scores (which CFR-I call “teacher-level bias”) depends
on an auxiliary parameter – the correlation between teachers’ causal effects
and the bias in their scores – that is not identified by the quasi-experiment.
If this correlation is assumed to be zero, as in nearly all past work, my results
imply that the bias component of VA scores is 10-20% as large, in variance
terms, as the component reflecting teachers’ causal effects. The assumption
of zero correlation is unfounded, however. If it is loosened, teacher-level bias
could be as small as 4% or as large as 100% of the variance of teachers’ true
effects. Horvath (2015) estimates the correlation to be -0.3; if so, my estimates
imply that the variance of the bias is nearly 35% of the variance of teachers’
causal effects.

Bias of this magnitude would lead to substantial misclassification of teach-
ers with unusual assignments (e.g., those thought to be particularly effec-
tive with advanced or delayed students), and thus has important implications
for their use in teacher evaluations.6 Teachers may be unfairly rewarded or
punished based on the students they are assigned, and all teachers will face
perverse incentives to “game” their evaluations by altering these assignments,
potentially reducing allocative efficiency. Moreover, the incentives that re-
wards and sanctions are meant to create will be attenuated, as many will be
allocated or withheld based on factors other than effective teaching.

Another implication of bias in VA scores is that inferences about the long-
run effects of high VA teachers, as in CFR-II, are potentially confounded by the
bias component, which is likely to be correlated with unobserved determinants
of students’ long-run outcomes. I turn to this in Section 4.

CFR-II present both cross-sectional and quasi-experimental estimates of
the association between teachers’ VA scores and their impacts on long-run
earnings. I show that the cross-sectional estimates, which do not control even
for observed differences in teachers’ students, rely on quite restrictive assump-

6In Section 5, I estimate the induced misclassification rate at around 25% in a best-case
scenario.
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tions. Estimates that include controls, while still requiring strong (though in
my view more plausible) exclusion restrictions, are more robust and, empiri-
cally, indicate much smaller (by 33-80%, depending on the outcome) long-run
effects. Moreover, as in the short-run analyses of CFR-I, I find that CFR-II’s
quasi-experimental analyses are quite sensitive to the inclusion of controls for
endogeneity of teacher switching. Indeed, none of the estimates with controls
are significantly different from zero.

This comment follows an extended exchange with CFR and others (see,
e.g., Rothstein, 2014; CFR 2014d; 2014e; 2015a; and Bacher-Hicks et al.,
2014). The empirical results are remarkably robust across quite disparate
settings. However, while productive, the exchange has not led to consensus
on the interpretation of the results. I interpret them to indicate that the
teacher-switching research design does not provide the credibility of a success-
ful quasi-experiment. What evidence there is indicates that (a) VA scores are
meaningfully, but not overwhelmingly, biased by student sorting, with “fore-
cast bias” around 15% and (under reasonable assumptions) actual bias 10-35%
as large, in variance terms, as teachers’ causal effects, and (b) teachers’ VA
scores are less informative than is implied by CFR-II’s results, and perhaps
completely uninformative, about the teachers’ long-run impacts.

1 Teacher VA, bias, and the teacher switching

quasi-experiment

This section develops notation and describes CFR-I’s teacher switching quasi-
experimental research design and my test of it. I follow CFR-I’s notation where
possible; readers are referred to their paper for a more complete description.

1.1 Teacher value-added

Anecdotally, classroom assignments depend on the school’s assessment of the
student’s ability and personality, on parental preferences (and on parents’
effectiveness at getting their preferences met), on teachers’ specializations, and
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on factors that are idiosyncratic from the school’s perspective (e.g., the date
that the student enrolls). All of these may correlate with students’ potential
and preparedness.

The above factors are not measured, so cannot be controlled directly. VA
models attempt to limit the resulting bias in estimates of teachers’ causal
effects on their students’ end-of-year test scores by controlling for those char-
acteristics which are observed. The most important of these factors is the
student’s prior test score, but some models (including CFR-I’s) also control
for earlier scores, free lunch status, disability, English proficiency, mobility,
race, and gender. CFR-I, unusual among VA models, also include classroom-
and/or school-level means of the individual controls.7

CFR-I’s VA model has several steps. Let A

⇤
it be the test score of student

i at the end of year t with teacher j (i, t), and let Xit be a vector of observed
covariates. First, A⇤

it is regressed on Xit with teacher fixed effects:

A

⇤
it = ↵j(i,t) +Xit� + ✏it. (1)

Second, the Xit� term is subtracted from A

⇤
it to form a residual score:8

Ait ⌘ A

⇤
it �Xit�̂ = ↵̂j(i,t) + ✏̂it. (2)

Third, this residual score is averaged to the teacher-year level to obtain Ājt.
This is CFR’s basic estimate of the effect of teacher j on her year-t students,
denoted µjt. Finally, the teacher’s sequence of mean residuals across other
years t0 6= t is used to form a leave-one-out forecast of the teacher’s residual in
year t, µ̂jt ⌘ E



Ājt|
n

Ājt0

o

t0 6=t

�

. CFR-I’s specific calculation of this forecast
is complex and designed to accommodate the possibility that µjt may evolve
(“drift”) over time. For my purposes, it suffices to note that µ̂jt is a shrinkage

7The models used for actual evaluations generally use fewer controls (see, e.g., SAS Insti-
tute, 2015; American Institutes for Research, 2015; Value-Added Research Center, undated).

8The teacher fixed effects in (1) make little difference: In the North Carolina sample, the
correlation between Ait, as defined in (1) and (2), and the residual from an OLS regression
of A⇤

it on Xit without fixed effects is over 0.99 at the student level and 0.98 at the classroom
level.
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estimator, which can be seen as an Empirical Bayes (EB) prediction of the
teacher’s causal effect µjt under the assumption that Ājt is a noisy but un-
biased estimate of µjt.9 Importantly, µ̂jt is an unbiased prediction of Ājt by
construction, whether the latter is an unbiased estimate of µjt or not.

CFR-I refer to the EB prediction µ̂jt as teacher j’s value-added. For clar-
ity, I reserve that term for the true causal effect µjt, and I refer to µ̂jt as
the predicted or forecast value-added. Hereafter, I will assume for simplic-
ity of exposition that µjt ⌘ µj – that teachers’ causal effects do not “drift.”
Empirically, however, I follow CFR-I’s methods, which do not impose this.

1.2 Bias in VA estimates and predictions

The goal of VA models is not to forecast teacher residuals, but to measure a
teacher’s causal effect on her students. A central question in the VA litera-
ture is whether the available controls are sufficient to permit this, or whether
some teachers are systematically assigned students who are unobservably ad-
vantaged or disadvantaged, conditional on the VA model controls (Rothstein,
2010, 2009; Guarino et al., 2012). In the above notation, Ājt may overstate
µj for teachers whose students are systematically but unobservably stronger
than expected given their Xs, and understate it for those with unobservably
weaker students. If the same teachers tend to be assigned the same types of
students each year, then µ̂jt will also be biased as a predictor of µj.

Consider separating the mean residual Ājt into four components:

Ājt = µj + bj + vjt + ejt. (3)

The first term, µj, represents the teacher’s causal effect. The second and third
terms derive from non-random student assignments that create systematic dif-
ferences in ✏it across classrooms: bj is the component that is permanent within
teachers, while vjt varies across years. The former might capture teacher spe-

9I define bias more carefully below. For the moment, the necessary assumption for µ̂jt

to be an unbiased prediction of the causal effect µjt is that Ājt � µjt is mean independent
across years within teachers – that any non-randomness in student assignments in any year
is not persistent across years.

8



cializations – a teacher who is thought to be particularly effective with, say,
hyperactive students might be assigned the same students year after year –
and the latter might arise if classroom groupings are non-random but class-
rooms are distributed randomly across teachers. I assume that vjt is serially
uncorrelated.10 The final term, ejt, is a noise term that is also independent
across years. It includes pure sampling error and idiosyncratic classroom-level
shocks such as the proverbial dog barking on test day.

The shrinkage procedure in the final step of CFR-I’s model is designed to
isolate the component of Ājt that is stable across years. In effect, this treats
the idiosyncratic bias term vjt as noise, comparable to ejt. But the method
does not isolate µj from bj, which CFR-I refer to as “teacher-level bias.” Thus,
a central goal in the VA literature is to measure V (bj), and in particular to
test whether V (bj) = 0.

CFR-I define “forecast bias” as B ⌘ 1� �, where:

� ⌘ cov (µj, µ̂jt)

V (µ̂jt)
=

V (µj) + cov (µj, bj)

V (µj) + V (bj) + 2cov (µj, bj)
.

The second equality here follows from µ̂jt’s construction as an Empirical Bayes
prediction of µj + bj. Zero forecast bias (� = 1, B = 0) is necessary but not
sufficient for µ̂jt to be teacher-level unbiased (i.e., for V (bj) = 0). In particular,
if cov (µj, bj) < 0 then � can equal or exceed one even when V (bj) > 0.
The available evidence suggests this is empirically relevant: Horvath (2015)
estimates corr (µj, bj) = �0.3 for North Carolina teachers, while Angrist et al.
(2015b) estimate a correlation of �0.23 (with a large standard error) between
schools’ causal effects and the bias in school-level VA scores in Boston.

Rothstein (2009; see also Guarino et al., 2012) attempts to quantify the
magnitude of biases in common VA models, using the distribution of observ-
ables across classrooms and assessments of the likely role for unobservables.
Assuming that corr (µj, bj) = 0, he concludes that the plausible range for �

10This is restrictive – it does not allow, for example, for an autoregressive component of
student assignments. I adopt the decomposition for simplicity of exposition. In practice,
any non-zero covariance between bj + vjt and bj + vj,t+1 would create bias in VA-based
evaluations, which are typically based on just two or three years of data.
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is roughly 0.6 to 1, corresponding to V (bj)
/V (µj) between zero and 2

3 . If the
correlation is instead -0.3, the upper bound of the variance ratio is about 0.75.

1.3 The teacher-switching quasi-experiment

CFR-I build on an experiment conducted by Kane and Staiger (2008) in which
students were randomly assigned. Let µ̂jt be a shrunken / Empirical Bayes
prediction based on observational data from years other than t. Random as-
signment in t ensures that any determinants of the teacher’s students’ mean
outcomes in that year, other than the teacher’s own causal effect µj, are or-
thogonal to both bj and µ̂jt. Thus, a regression of these mean experimental
outcomes on the observational prediction µ̂jt identifies �.

Unfortunately, it has proven difficult to randomize students to classrooms
at a large scale, so experimental estimates of � have standard errors around
0.2 or higher (Kane and Staiger, 2008, Kane et al. 2013; see also Rothstein
and Mathis 2013) and have not substantially narrowed the plausible range.11

CFR-I generalize the experimental test to a non-experimental setting, ex-
ploiting episodes where a teacher enters or leaves a school or switches grades
within the school. The replacement of one teacher with another should lead to
an increase in student achievement equal to the difference between the teach-
ers’ causal effects. If the teachers’ VA scores are unbiased estimates of their
respective causal effects, then the difference in Empirical Bayes predictions
should forecast this difference without bias and scores should, on average, rise
by as much as predicted. By contrast, bias in the VA scores would mean that
the difference in causal effects will tend to be smaller (closer to zero) than the
prediction by a factor B.

Without random assignment within schools, new and old teachers may be
assigned differently selected students, reproducing the non-experimental bias
in mean outcomes. To abstract from this, CFR-I aggregate to the school (s)
- grade (g) - subject (m) - year (t) level and consider changes in the average

11In a very similar analysis of school-level VA scores, Angrist et al. (2015b) estimate
�̂ = 0.86 (S.E 0.08). They go on to develop a more powerful test of the sharper null
hypothesis that V (bs) = 0 and reject this. See also Deutsch (2013).
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predicted VA of the teaching staff.12 Their primary analyses regress the year-
over-year change in mean student scores, �A

⇤
sgmt ⌘ Ā

⇤
sgmt � Ā

⇤
sgm,t�1, on

the difference in mean predicted VA of the teachers to which the students
were exposed (which they denote �Qsgmt), with year or school-by-year fixed
effects.13 Their primary conclusions are based on this regression.

For aggregation to the school-grade-subject-year level to eliminate student
sorting biases, it is essential that all students in the cell be included. As I
discuss below, in practice CFR-I exclude a non-random subset of classrooms
from their aggregates. This biases the quasi-experimental coefficient toward
the observational regression of Ājt on µ̂jt, which necessarily – by virtue of
the Empirical Bayes shrinkage used to construct µ̂jt – has a coefficient of one
regardless of the presence or absence of forecast or teacher-level bias.

1.4 Assessing the quasi-experiment

The regression of �A

⇤
sgmt on �Qsgmt identifies � under CFR-I’s Assumption 3

(hereafter, “A3”):

ASSUMPTION 3 (Teacher Switching as a Quasi-Experiment): Changes
in teacher VA across cohorts within a school grade are orthogonal
to changes in other determinants of student scores.14

This assumption would be violated if, for example, schools that are gentrifying
12For their quasi-experimental analyses, CFR-I use “leave-two-out” predictions of the year-

t and t � 1 residuals, which they denote µ̂

�{t�1,t}
jt and µ̂

�{t�1,t}
jt�1 , that are based on data

from other years. I also use leave-two-out predictions, but retain the µ̂jt notation.
13CFR-I’s discussion (p. 2617) suggests that the appropriate dependent variable is the

change in mean residual scores, as defined in (2). If �Qsgmt were randomly assigned, either
raw or residual scores should yield unbiased estimates of �. CFR-I’s empirical analysis
uses mean raw scores on the grounds that “changes in control variables across cohorts are
uncorrelated with �Qsgmt,” (p. 2618). I show below that this is not the case.

14An additional assumption, unstated by CFR-I, is required to support the aggregation
of Empirical Bayes predictions: Both µj and bj must be independent across teachers within
school-grade-subject-year cells and between outgoing and incoming teachers. The evidence
suggests this assumption is counterfactual, though perhaps not by enough to matter. CFR
(2015a) report that the correlation of teachers’ (shrunken) VA within schools is approxi-
mately 0.2 in New York; in North Carolina, it is around 0.15. See additional discussion
below and in the Appendix.

11



– with later cohorts more advantaged than earlier cohorts – are able to attract
teachers that have higher (measured) VA than those who they are replacing.

A3 is not directly testable. But it is unlikely to hold if the change in
student characteristics at the school-grade-subject-year level is correlated with
�Qsgmt. Tests like this are a standard approach to probing the validity of a
quasi-experiment, and are analogous to tests commonly conducted to assess
successful randomization in true experiments. The most useful characteristics
for such a test are those that are predictive of outcomes but are not caused
by grade-g teachers. Rothstein (2010) uses this method to assess teacher-level
VA estimates, finding that students’ teacher assignments are correlated with
the students’ test scores in earlier grades.

CFR-I present a test of this form, using characteristics (household income,
homeownership) that are not included in the VA specification. They interpret
their null result (CFR-I, Table 4, column 4, reproduced below as column 3
of Table 1) as evidence in support of the assumption. But there is no reason
not to also examine variables that are included in the VA model’s Xit vector.
Indeed, these characteristics are the most important to examine, as they are
chosen specifically to be strong predictors of students’ end-of-year scores so
orthogonality failures have great potential to create bias in estimation of �.

Below, I find that Xit does change across years in ways that are correlated
with �Qsgmt. I begin with prior-year scores – VA models use these to capture
many otherwise hard to measure determinants of teacher assignments and
of end-of-year scores – but I also obtain similar results with the full score
prediction Xit�̂ (see equation 1) and with a more restricted prediction based
only on non-test elements of Xit (e.g., free lunch status, race, exceptionality)
that are not plausibly influenced by past teachers.

The obvious explanation is that A3 is violated. The Appendix considers
and rules out several potential “mechanical” explanations, proposed by CFR
(2015a; 2014d) and Bacher-Hicks et al. (2014) following circulation of an initial
draft of this comment, that might lead to rejections of the placebo test null
even if the underlying design is valid. Further exploration indicates, however,
that another mechanical explanation is an important factor. Specifically, much
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of the problem derives from CFR-I’s omission of teachers with missing VA
predictions – those who are observed in only a single year – from their analyses.
These teachers are not randomly selected, and the exclusion of their students
from school-grade-subject-year averages incorporates some of the observational
student-teacher sorting into the putative quasi-experiment.

This points to two alternative routes toward reducing bias in �̂ from endo-
geneity of �Qsgmt. One can control for observables that are correlated with
�Qsgmt, under a selection-on-observables assumption, or one can include the
missing classrooms in the school-grade-subject-year means. Each requires as-
sumptions (as, of course, does CFR-I’s strategy of excluding a non-random
subset of classrooms). I pursue both options. Empirically, results are sensitive
to doing something about the failure of the quasi-experimental research design,
but mostly insensitive to just how it is addressed. In particular, results are
similar across several methods for controlling for student preparedness and
in specifications designed to “block” possible channels by which prior-grade
scores could be an intermediate outcome of the current-grade teachers’ VA.
The robustness of the adjusted results raises confidence in their validity. Ap-
pendix B further explores the inclusion of missing classrooms in the sample,
demonstrating that results are similarly stable when I vary the strategy for
assigning VA predictions to the missing teachers and or restrict the sample to
school-grade-year cells with no missing data, as suggested by CFR (2015a).

2 North Carolina data

I draw on administrative data for all students in the North Carolina public
schools in 1997-2011, obtained under a restricted-use license from the North
Carolina Education Research Data Center. North Carolina is a dramatically
different setting from New York City. Nearly half of North Carolina schools are
rural. Education is provided by 219 separately administered districts (though
the state Department of Public Instruction (DPI) plays a larger role than in
many other states); New York City has a single district divided into adminis-
trative sub-districts. Just over 25% of students in North Carolina are Black
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and under 15% are Hispanic, with the remainder overwhelmingly white; in
New York, about 30% are Black, 40% are Hispanic, 15% are Asian, and only
15% are white non-Hispanic.

North Carolina administers end-of-grade tests in math and reading in
grades 3 through 8. Third grade students are given “pre-tests” in the Fall;
I treat these as grade 2 scores.15 I standardize all scores within each year-
grade-subject cell.

The North Carolina administrative records record the identity of the test
proctor. This is usually but not always the student’s regular classroom teacher,
though in grades where students are taught by separate teachers for different
subjects the proctor for the math test might be the English teacher. I thus
limit the sample to students in grades 3-5, whose classrooms are generally
self-contained. I use data on teachers’ course assignments to identify exam
proctors who do not appear to be the regular classroom teacher.

Many studies using the North Carolina data exclude such proctors and
their students. That is not feasible here, as the quasi-experimental strategy
requires data on all students in the school-grade cell. Instead, I assign each
proctor who is not the classroom teacher a new ID that is unique to the test
year.16 This ensures that student achievement data is not used to infer the
proctoring teacher’s impact.

Several of CFR-I’s covariates – absences, suspensions, enrollment in honors
classes, and foreign birth – are unavailable in the North Carolina data. Thus,
my Xit vector has a subset of CFR-I’s controls: Cubic polynomials in prior
scores in the same and the other subject, interacted with grade; gender; age;
indicators for special education, limited English, grade repetition, year, grade,
free lunch status, race/ethnicity, and missing values of any of these; class- and
school-year- means of the individual-level controls; cubics in class- and school-

15Pre-test scores are missing after 2008, as well as for math in 2006 and reading in 2008.
Third graders with missing pre-test scores are excluded. When students re-take the tests, I
use only the score from the first administration.

16I use a less restrictive threshold for a valid assignment than in past work (e.g., Clotfelter
et al., 2006; Rothstein, 2010). Insofar as I fail to identify non-teacher proctors, this will
attenuate the within-teacher autocorrelation of Ājt. This autocorrelation is larger in my
sample than in CFR-I’s. See Figure A1 in the Appendix.
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grade mean prior scores; and class size.17 For long-run outcomes, CFR-II draw
on IRS data. Lacking this, I draw more proximate outcomes from high school
transcripts (graduation, GPA, class rank) and exit surveys (college plans).

I start with over 8.6 million student-year-subject observations, spread across
three grades (3-5), two subjects (math and reading), 1,723 schools, and 15
years (1997-2011). After excluding students with missing test scores, special
education classes, and classes with fewer than 10 students, I am left with 7.1
million observations, of which 79% are linked to 36,451 valid teachers. My orig-
inal sample is a bit smaller than CFR-I’s, which contains approximately 18 mil-
lion student-year-subject observations, but the sample size for VA calculations
is similar (7.1 million vs. 7.6 million in CFR-I’s sample). I have non-missing
leave-one-out predicted VA scores for 257,066 teacher-year-subject cells, with
an average of 22 students per cell. The sample for the quasi-experimental
analysis consists of school-grade-subject-year cells with non-missing �Qsgmt.
I have 79,466 such cells, as compared with 59,770 in CFR-I.

3 The Teacher-Switching Quasi-Experiment: Re-

production and Assessment

3.1 Reproducing CFR-I’s analysis in North Carolina data

I use CFR’s (2014f) Stata programs to reproduce their VA calculations and
analyses in the North Carolina data. Table 1 reports CFR-I’s main quasi-
experimental specifications (Panel A) along with corresponding estimates from
the North Carolina data (Panel B). Column 1 presents coefficients from a
regression of the year-over-year change in average scores at the school-grade-
subject-year level (�A

⇤
sgmt) on the change in average predicted VA (�Qsgmt),

with year fixed effects.18 Column 2 repeats the specification with school-year
17Free lunch, limited English, and special education measures are missing in some years.

I set each to zero if missing, and include indicators for missing values (as well as class- and
school-year means of these) in X.

18Following CFR-I, the regression is weighted by the number of students in the school-
grade-subject-year cell; standard errors are clustered at the school-cohort level; and class-
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fixed effects.
The coefficients of these regressions estimate � under assumption A3. If

this assumption holds, the null hypothesis of no forecast bias corresponds to
� = 1, while we would expect � < 1 if teacher-level bias is present and not too
negatively correlated with teachers’ causal effects. My estimate in Column 1 is
somewhat larger than CFR-I’s, and significantly greater than 1, but when I add
school-year fixed effects in Column 2, the coefficient is much smaller and, like
CFR-I’s, indistinguishable from the null hypothesis. This is the specification
illustrated in Figure 1.

CFR-I report a placebo test of their quasi-experimental design based on
changes in predicted scores where predictions are made using only variables
that are unaffected by teacher assignments. Specifically, CFR-I regress ob-
served scores on parent characteristics, then average the fitted values at the
school-grade-subject-year level, difference across years, and use this as the
dependent variable in the quasi-experimental regression. This specification is
reported in Column 3 of Table 1.19 In both samples, the year-on-year change in
mean predicted VA is uncorrelated with the change in mean predicted scores.

Column 4 presents a specification drawn from CFR-I’s Table 5, Column
2. In Columns 1-3, teachers who do not have leave-one-out VA predictions –
because they are observed only in t � 1 or t – are excluded from the school-
grade-subject-year VA mean, and their students are excluded from the test
score average. In Column 4, all teachers and students are included, with
teachers with missing predictions assigned the grand mean VA score of zero.
In both the New York and North Carolina samples, this leads to rejection of
the null hypothesis that � = 1, with �̂ = 0.88 in New York and �̂ = 0.94 in
North Carolina. I discuss this result in more depth in the next subsection.

Appendix A presents reproduction estimates for most of CFR-I’s other
analyses. Results are generally quite similar in North Carolina as in CFR-I’s

rooms with teachers not seen in other years are omitted from both dependent and indepen-
dent variables.

19CFR-I’s prediction is based on mother’s age, marital status, parental income, 401(k)
contributions, and homeownership, all drawn from tax files. Mine is based only on parental
education, as reported in the North Carolina end-of-grade test score files through 2007.
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sample. I summarize the few differences briefly here. Math VA is more variable
in North Carolina, while English VA has a similar variance in the two samples.
In both math and English, the autocorrelation of teacher VA across years is
higher in the North Carolina data (Appendix Table A2 and Appendix Figure
A1), implying less noise in the measurement process and perhaps also less drift
in teachers’ true VA. While students with higher prior-year scores tend to be
assigned to teachers with higher predicted VA in both samples (Appendix Ta-
ble A7), special education students get higher VA teachers in North Carolina,
on average, but lower VA teachers in New York. In North Carolina but not
in New York, minority (black and Hispanic) students are assigned to teachers
with lower VA, on average, but in each district the relationship between school
minority share and average teacher VA is insignificantly different from zero.20

3.2 Assessing the Validity of the Quasi-Experiment

CFR-I’s main placebo test (see Table 1, Column 3) is based on permanent
parental characteristics, taken from tax returns. But these are unlikely to
capture the dynamic sorting that Rothstein (2010) found to be a potentially
important source of bias in VA models. Moreover, they are not observed by
school administrators, so are unlikely to affect teacher assignments directly.

Panel A of Table 2 presents additional placebo test estimates in the North
Carolina data. Each entry represents a separate quasi-experimental analy-
sis, using the same specification as in Table 1, Column 2, but varying the
dependent variable. In Column 1, the dependent variable is the between-
cohort change in mean prior-year scores for the same students used for the
quasi-experimental analysis. That is, when examining the change in the mean
predicted VA of 5th grade teachers at school s between years t� 1 and t, the
dependent variable is the change in average 4th grade scores across the same
two cohorts (i.e., from t � 2 to t � 1). Grade g � 1 scores are strongly pre-
dictive of grade-g scores, at both the individual and school-grade-subject-year
levels, so a correlation with �Qsgmt would indicate that the quasi-experiment

20Bacher-Hicks et al. (2014) find that teacher VA is significantly lower in high minority
share schools in Los Angeles.
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is not valid (subject to potential caveats discussed below). The coefficient is
+0.144 and is highly significant. (This is the specification illustrated in Fig-
ure 2.) Evidently, changes in student preparedness are correlated with the
quasi-experimental treatment, the change in average predicted VA.

After a preliminary version of this paper was shared with CFR, they con-
firmed that this result holds in New York as well. In a specification like that in
Table 2, Column 1, albeit with year fixed effects rather than school-year effects,
CFR (2014d) report a coefficient of +0.226 (standard error 0.033). When I
use an identical specification in the North Carolina sample, the coefficient is
+0.231 (0.021); Bacher-Hicks et al. (2014) report a +0.268 (0.039) coefficient
in data from Los Angeles.

Column 2 of Table 2 repeats the placebo test, this time using predictions of
end-of-year scores based on all of the covariates included in the VA specifica-
tion rather than just the prior-year score. That is, the dependent variable here
is the cohort-over-cohort change in the mean of Xit�̂, from equation (1). As
�Ā

⇤
sgmt = �Āsgmt +�X̄sgmt�̂, this is scaled to correspond exactly to the bias

in the quasi-experimental results deriving from the use of unadjusted scores,
A

⇤
it, in place of adjusted scores Ait (see footnote 13). The coefficient is 0.105

and is again highly significant.
These results indicate that assumption A3 is violated – the change in av-

erage VA across cohorts is correlated with other determinants of the change
in outcomes, so the association between the former and the latter does not
identify �. Responding to a preliminary draft of this comment, however, CFR
(2014d; 2014e) suggest that the results reflect a problem with the placebo test
rather than with the research design:

Because teacher VA is estimated using data from students in the
same schools in previous years, teachers will tend to have high VA
estimates when their students happened to do well in prior years.
Regressing changes in prior test scores on changes in teacher VA
effectively puts the same data on the left- and right-hand side of
the regression, mechanically yielding a positive coefficient. (CFR
2014d, p. 1)
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CFR point to two potential sources of such “mechanical” effects. First, some
teachers who teach grade-g students in t or t� 1 might have taught the same
cohorts of students previously, in grade g�1 in t�1 or t�2 (or in grade g�2

in t�2 or t�3). This could induce a positive correlation between the teachers’
effectiveness and the students’ g � 1 scores – in effect, these prior-year scores
are intermediate outcomes of the effectiveness of the grade g teacher. Second,
even when teachers do not follow students across grades, a mechanical effect
could arise from the fact that data from t � 2 is used both to measure the
prior-year achievement of t�1 students and to forecast the t�1 teachers’ VA.
Any shock that is common across grades in the school-year cell could create
a positive correlation between the measured VA of the t� 1 teachers and the
t� 2 scores of the t� 1 students, biasing the placebo coefficient upward.21

Column 3 of Table 2 presents an alternative placebo test that excludes
all mechanical effects related to test score dynamics or VA measurement by
removing test scores entirely from the dependent variable. Here, I form a pre-
dicted score for each student, Xit�̂, using the same methods as in Column 2
but using only the demographic variables – the students’ age and indicators for
gender, ethnicity, free lunch, special education, limited English, grade repeti-
tion, and for missing values for each of these, along with class and school-year
means – in Xit. None of these would be affected by prior teachers’ effectiveness
or by school-level shocks. But I find that the change in mean predicted VA
is significantly associated with the change in the mean predicted score based
on these demographic characteristics alone.22 This conclusively establishes
that the placebo result cannot be attributed to the mechanical explanations
proposed by CFR (2015a). 23

So what does drive the placebo effect? The data point to a third mechanical
21Note that either dynamic would likely invalidate not just the placebo test but also

CFR-I’s quasi-experimental research design itself. See Appendix B.
22The coefficient is smaller here than in Column 2. The demographic variables are less

predictive of A⇤
it than is the full Xit vector. The decline in the coefficient is exactly what

one would expect if �Qsgmt is correlated both with the demographic characteristics and
with prior scores conditional on demographics; see Altonji et al. (2005).

23Appendix B explores this issue further. While there is some evidence that “teacher
followers” contribute to the effect, the results are generally quite stable.
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explanation as an important factor. Recall that CFR-I’s explanatory variable
is constructed from predicted VA scores of teachers in t � 1 and t, based on
the residual scores of the teachers’ students in years other than t� 1 and t. If
a teacher is observed in only t� 1 or t, there is no other information on which
to base the prediction. CFR-I drop the teacher from the average Qsgmt and
drop the teacher’s students from the average Āsgmt.

This sample selection can reintroduce student sorting into the quasi-experiment,
even if teacher switching is random. In both North Carolina and New York,
more advantaged students (those with higher prior scores, or with higher fam-
ily income) tend to be assigned to higher VA teachers (see Appendix Table
A7). So when we lack a predicted VA score for a high (respectively, low)
VA teacher, excluding her from the VA average tends to reduce (increase)
Qsgmt, while excluding her students from the mean prior-year or end-of-year
score tends to reduce (increase) Āsgmt. This pushes both �̂ and the placebo
coefficient upward relative to what would be obtained were all teachers and
classrooms included.

Recall from Section 3.1 that CFR-I present one specification that includes
these teachers, assigning them predicted VA scores equal to the grand mean.24

This is not an ad hoc imputation, but rather the score implied for these teach-
ers by the Empirical Bayes methodology. The VA prediction used in the quasi-
experimental analysis is the leave-two-out prediction based on the teacher’s
observed performance in years other than t � 1 and t, shrunken toward the
grand mean. For a teacher observed only in those years, there is no signal at
all, so shrinkage is complete and the best predictor (and the Empirical Bayes
estimate) is the grand mean µ̂jt = 0. In their Table 5, Column 2 (reproduced
as Table 1, Column 4 here), CFR-I assign this grand mean to teachers ob-
served in just a single year, and include both the teachers and their students
in the school-grade-subject-year means.25

24These teachers are included as well in CFR-II’s preferred quasi-experimental specifica-
tions, with a sample excluding them used only for a specification check.

25Teachers observed in both t � 1 and t but no other years also have missing leave-
two-out predictions. Across all their specifications, CFR-I always include these teachers,
with predictions set equal to the grand mean. The issue here concerns only those teachers

20



I use this approach to include all classrooms in the sample in Panel B of
Table 2. The placebo test coefficients are uniformly smaller here, suggesting
that sample selection is an important contributor to the endogeneity identified
in Panel A.26

The use of the grand mean for teachers missing leave-two-out VA predic-
tions relies on an assumption that teacher VA is independent across teachers
within a school. Indeed, this assumption is implicit in CFR-I’s entire quasi-
experimental analysis. Although CFR-I construct their predictions at the level
of the individual teacher, the relevant prediction for the quasi-experimental
analysis is at the level of the school-grade-year mean. If VA is not independent
within schools, the average of teacher-level EB predictions is not an unbiased
prediction of the average of the teachers’ true effects.

In particular, if µj is positively correlated among teachers at the same
school, the change in the average of teachers’ EB predictions overstates (in
magnitude) the EB prediction of the change in the average teacher’s VA, even
if data is available for all teachers. Unbiased estimation of � would require
shrinking teachers’ performance toward the school mean rather than toward
the grand mean, and using the school mean in place of the grand mean to im-
pute VA predictions to teachers missing leave-two-out VA information. Failure
to do so creates downward biases in both �̂ and the placebo test coefficients
in Table 2, Panel B.

But it is not clear that that this issue is important in practice. The intra-
class correlation of teacher VA is 0.2 or less. A correlation of this magnitude
is unlikely to cause serious problems if teachers are treated as independent
within schools. Appendix B explores alternative VA predictions (e.g., the
school mean) for the teachers with missing leave-two-out scores, consistent
with different assumptions about the correlation structure. This has essentially
no effect on the results.

Finally, it is important to note that excluding teachers with missing VA,

observed in one year but not the other. CFR do not explain the differential treatment.
26Other specifications, not reported here, indicate that the significant coefficients in Panel

B are – in contrast to the Panel A results – not entirely robust.
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as in most of CFR-I’s analysis and Panel A of Table 2, relies on auxiliary
assumptions as well. The needed assumption here is that there is no sorting
of students across classrooms within a school. Since evaluating the extent of
such sorting is the entire point of the exercise, one would prefer not to assume
it away in estimating �. Without this assumption, however, the selected-
sample estimate �̂ is biased toward 1. Moreover, it is clear from Table 2 that
�Qsgmt is importantly endogenous when computed from the CFR-I subsample.
Panel B of Table 2 indicates that the problem is diminished, but perhaps not
eliminated, when all classrooms are included.

3.3 Quasi-Experimental Estimates Under A Selection on

Observables Assumption

The failure of the placebo test strongly implies that the �̂ obtained from the
teacher switching analysis, at least as applied to CFR-I’s selected sample,
is biased upward. The predicted score specification in Table 2, Column 2,
suggests that the bias is at least 0.10 in the selected sample, though it may
be smaller when all classrooms are included.27 In Table 3, I explore several
approaches to estimating � without bias.

Panel A follows CFR-I in focusing on the selected subsample of classrooms
with non-missing teacher VA predictions. Given the placebo test results, I
explore the sensitivity of �̂ to the inclusion of controls for the change in student
preparedness. Column 1 repeats the specification from Table 1, Column 2.
Column 2 adds the change in students’ mean prior-year scores as a right-hand
side variable.28 This reduces the �̂ coefficient to 0.933 (0.015).

27Note that the bias may be larger than the coefficients in Table 2, Column 2 if unobserv-
ables change with observables – see footnote 22.

28CFR-I present one specification that controls for a cubic in the change in students’ mean
prior-year scores, in their Table 4, Column 3. This specification also controls for leads and
lags of �Qsgmt, which are constructed using data from t� 1 and t so may be endogenous,
though coefficients are not reported. In the North Carolina sample, the coefficient on the
lead term is highly statistically significant. Taken literally, this is a failed falsification test.
But I prefer to exclude the leads and lags of �Qsgmt. The result in Column 2 is substantively
unchanged when I allow for a nonlinear effect of the mean prior-year score; I focus on the
linear model for ease of presentation.
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Column 3 presents a specification that excludes the change in prior-year
scores but switches the dependent variable to the change in mean residual
scores (i.e., to �Āsgmt rather than �Ā

⇤
sgmt). This is the specification pro-

posed by CFR-I in developing the quasi-experimental methodology (see their
discussion on p. 2617), though in their empirical implementation they use
unadjusted scores on the basis of evidence, contradicted above, that changes
across cohorts in observable characteristics are orthogonal to �Qsgmt. The
coefficient here, 0.931, is quite similar to that in Column 2. Column 4 uses the
change in gain scores as the dependent variable, as in Figure 3. This yields
a somewhat smaller coefficient, 0.889, than in Columns 2 and 3. Note also
that each of the methods for controlling for pre-treatment observables yields
a more precise estimate than in the unadjusted specification in Column 1 –
this added precision is the reason that many experimental analyses control for
baseline outcomes even when there is no evidence that the randomization was
unsuccessful.

Panel B presents estimates that use all classrooms, assigning teachers ob-
served in only a single year a VA prediction of zero. As noted in Section 3.2,
this relies on different, but no less plausible, assumptions than do estimates
that exclude such classrooms. Table 1 shows that this simple change, even
without controls, reduces the �̂ coefficient substantially (from 1.097 to 0.936
in North Carolina data, or from 0.974 to 0.877 in CFR-I’s New York sample),
and Table 2 showed that the placebo test violation is smaller in this sample.
Accordingly, I find that the full-sample �̂ coefficient is less sensitive to choices
about how to control for student preparedness. Across all four columns, it
ranges between 0.83 and 0.90, with standard errors around 0.02.29

Appendix Table B1 presents several specifications aimed at testing the
robustness of the results to alternative methods of dealing with mechanical
relationships between �Qsgmt and the change in prior-year scores. Results are
quite robust. �̂ is near 1 when the selected sample is used without adjustments

29The difference between the result in Table 1 and that in Column 1 of Table 3 is that
the former reproduces CFR-I’s specification, which includes only year fixed effects. Table 3
includes school-year fixed effects in each specification.
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for violations of the quasi-experimental design; near 0.93 when the selected
sample is used but prior scores are controlled; and 0.86 or a bit smaller when
all classrooms are included, with or without controls for additional sorting
on observables. These results are not driven by any of the dynamics that
CFR (2015a) point to as potential confounding factors. Appendix B presents
additional specifications exploring alternative prediction strategies, other than
assigning the grand mean, for the teachers excluded from CFR-I’s main sample;
none have any material impact on the results.

CFR-I present one specification (CFR-I, Table 5, Column 4; reproduced
here in Appendix Table A5) that limits the sample to the less than one-third
of school-grade-subject-year cells where all of the teachers have non-missing
VA predictions, so the issue of sample selection and imputation does not arise.
In both New York and North Carolina, the point estimate is roughly similar
to the the baseline specification using all cells and including only classrooms
with non-missing data. This appears to suggest that sample selection is a
non-issue. But these estimates are quite imprecise, given the small sample.
More important, CFR-I use a different specification here, including only year
effects where their preferred models include school-by-year fixed effects. When
school-by-year effects are included in the no-missing-data subsample, results
are quite similar to those that I obtain in the full sample. See Appendix Table
B3.30

I conclude that the best estimate of � based on the quasi-experimental
design, after adjusting for exogeneity failures, is around 0.85. This is near
the middle of 0.6-1 range suggested by Rothstein’s (2009) simulations, where
CFR-I’s original results pointed to the very top of that range. Moreover,
it indicates a substantively important amount of bias. If we assume that
biases are uncorrelated with true effects, � = 0.85 implies that V (bj)

/V (µj) ⇡
0.2. Negative correlations would imply larger bias ratios – a correlation of
-0.3 (Horvath, 2015) implies V (bj)

/V (µj) ⇡ 0.35. As I discuss in Section 5,
even the smaller estimate is large enough to produce a non-trivial number of

30Mansfield (2015) estimates �̂ = 0.832 when applying the CFR-I strategy to high school
teachers’ VA and limiting the sample to the no-missing-data subsample.
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misclassifications in VA-based evaluations and to create incentives for teachers
to manipulate their assignments – by, e.g., refusing to teach classes that will
hurt their VA scores – under high-stakes evaluations.

4 Long-Run Effects

The analysis thus far indicates that VA scores are moderately biased by student
sorting, with forecast bias around 15% and teacher-level bias of 20-35%. CFR-
II’s subsequent analysis of the effects of teacher VA on students’ longer-run
outcomes, such as college graduation or earnings, is predicated on CFR-I’s
conclusion of unbiasedness. Accordingly, I revisit the CFR-II study here.

CFR-II present two types of analyses of longer-run outcomes. First, for
all of the outcomes they consider, they show “cross-class comparisons,” simple
regressions of class-level mean long-run outcomes on the teacher’s predicted
VA. Second, for a few outcomes, they also present quasi-experimental analyses
akin to those explored above. I reproduce both. I begin in Subsection 4.1 with
a discussion of the identification problem and CFR-II’s observational strategy.
I then present, in Subsection 4.2, estimates of the long-run effects of North
Carolina teachers, focusing on the sensitivity to the selection of controls and
to the estimation strategy.

4.1 Methods

Following CFR-II, I focus on models for ⌧j, the reduced-form impact of a
single teacher j on her student’s long-run outcomes, not controlling for prior or
subsequent teachers. CFR-II’s parameter of interest is the covariance between
⌧j and the teacher’s test score impact, rescaled as mj ⌘ µj

/�j where �j is the
standard deviation of µj:

 ⌘ cov (mj, ⌧j) , (4)

Because mj has unit variance by construction, this is equivalent to the coeffi-
cient of a regression of ⌧j on mj. Importantly, while we are interested in the
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teacher’s causal effect on long-run outcomes,  is not a causal parameter (so
does not represent, for example, the effect on long-run outcomes of interven-
tions aimed at raising teachers’ test score VA). Rather, it measures the value of
VA scores as proxies for teachers’ long-run impacts, which even with random
assignment would take many years to measure directly.

To estimate , CFR-II begin by estimating their VA model using the long-
run outcomes in place of end-of-year scores. Paralleling the earlier notation,
let Y ⇤

i represent the outcome for student i, and let Ȳjt be the classroom mean
residual after regressing Y

⇤
i against the VA model covariates, once again using

only within-teacher variation. As before, this residual reflects the teacher’s
true effect ⌧j, a bias term b

Y
j that is persistent within teachers, and terms

reflecting non-persistent sorting (⌫Y
jt) and random variation (eYjt):

Ȳjt = ⌧j + b

Y
j + ⌫

Y
jt + e

Y
jt.

CFR-II estimate  as the coefficient of a regression of Ȳjt on the standard-
ized predicted test score VA, m̂jt ⌘ µ̂jt

/�µ,

̂ =
cov

⇣

m̂jt, Ȳjt

⌘

V (m̂jt)
(5)

Importantly, though CFR-II refer repeatedly to the inclusion of controls in
this analysis, ̂ is always estimated via a bivariate regression; covariates are
used only to construct the residual long-run outcome Ȳjt. This is the reverse of
partitioned regression, where the explanatory variable is residualized against
covariates, and the resulting estimate ̂ does not equal the coefficient from a
multiple regression of Ȳjt (or Y

⇤
i ) on m̂jt controlling for Xjt. CFR (2015a)

clarify the reason for this: The parameter of interest here is the coefficient of
a bivariate regression of ⌧j on µj, not the multiple regression coefficient. If
students sort to teachers on the basis of ⌧j, the covariates Xjt might capture
some of this sorting, and the multiple regression  coefficient might understate
the value of mj as a proxy for ⌧j.

When the exercise is understood in this way, it is clear that if µj and ⌧j were
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observed directly no exclusion restriction would be required for identification
of . But neither is observed, and we must rely on the estimates µ̂jt and Ȳjt.
This requires assumptions.

First, µ̂jt must be forecast unbiased, so that the regression of ⌧j on m̂jt has
the same coefficient as a regression of ⌧j on mj.31 This is CFR-II’s Assumption
1. As discussed above, the evidence suggests that it does not hold.

Second, Ȳjt�⌧j = b

Y
j +v

Y
jt+e

Y
jt, the estimation error in a teacher’s long-run

impact, must be orthogonal to the teacher’s test score VA m̂jt, as otherwise
the substitution of the residual outcome Ȳjt in place of the teacher’s causal
effect ⌧j would bias ̂.32 This assumption is problematic as well. Where CFR-
I argued that the bias in test score VA (bj) was likely to be minimal, CFR-II
find affirmative evidence that teachers’ estimated long-run impacts are biased
– that is, that V

⇣

b

Y
j

⌘

> 0.33 In this case, the assumption requires that b

Y
j be

orthogonal to µ̂jt.
This is untestable, as b

Y
j – reflecting sorting on unmeasured student and

family characteristics – is not observed. But the evidence discussed above
that measured test score VA is correlated with observed family characteristics
suggests that it is unlikely to hold. See Appendix Table A7, which shows that
teachers with higher predicted VA are assigned students with higher prior
scores (included in the VA model) and higher family incomes (not included).

To further illustrate this, Table 4 presents regressions of several student
characteristics on the predicted VA of the teacher. Between-school variation
is of particular importance, as student socioeconomic status – very strongly
predictive of long-run outcomes, but less predictive of annual test score growth
– is much more heavily sorted across schools than across classrooms within

31We actually require more: The VA forecast error, mj � m̂jt, must be orthogonal to the
portion of a teacher’s long-run impact that is not captured by her test score VA, ⌧j �mj.

32This is implicit in CFR-II’s Assumption 2, which in my notation is that
cov

�

Ȳjt � m̂jt, m̂jt

�

= 0.
33See, e.g., CFR-II, p. 2638: “[T]he orthogonality condition required to obtain unbiased

forecasts of teachers’ earnings VA–that other unobservable determinants of students’ earn-
ings are orthogonal to earnings VA estimates–does not hold in practice.” See also the the
online appendix to CFR-II. In order for long-run VA to be biased but test score VA unbi-
ased, all sorting must be based on unmeasured characteristics that are predictive of long-run
outcomes but not predictive of test scores. See the related discussion in Ballou (2012).
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schools. Column 1 pools within- and between-school variation; in Column 2,
school fixed effects are included so only within-school variation identifies the
predicted VA coefficient; and in Column 3, the regressions are estimated on
school means to capture between-school variation. Schools with higher average
predicted VA teachers have much higher prior year test scores, lower free lunch
shares, and higher predicted student outcomes. Within schools, sorting is less
dramatic, but teachers with higher predicted VA are statistically significantly
less likely to be assigned minority students, students receiving free lunches, and
students with lower prior-year scores or predicted end-of-year scores. It thus
appears likely that unobserved family characteristics are similarly correlated
with µ̂jt, and that the CFR-II strategy confounds the association between ⌧j

and µj with a positive bias term coming from the association of bY with µ̂jt.
Below, I show that ̂ is is quite sensitive to the inclusion of controls for

differences in observed student characteristics across teachers. This strongly
suggests that ̂ is biased when estimated without controls. But controls for
student and family characteristics X̄j change the estimand from  to

X ⌘
cov

⇣

µj, ⌧j | X̄j

⌘

V

⇣

µj | X̄j

⌘

.

This may differ from . In particular, if parents and teachers are able to
discern teachers’ long-run impacts and if they sort on that basis, this would
create a causal channel running from ⌧ to X̄j and imply that X 6= .34 Under
this condition, it is exceedingly unlikely for cov

⇣

b

Y
, µj

⌘

= 0, as is required for
identification of  – this would require that the sorting depend only on the
part of teachers’ long-run effects that is not predictable based on their short
run effects, which there is no reason to expect. Thus, even though X may
not equal , evidence that ̂X differs from ̂ strongly suggests, though does
not entirely prove, that ̂ is biased relative to .

CFR-II also present quasi-experimental analyses of teachers’ long-run im-
pacts analogous to those used to estimate forecast bias. I show below that

34If students and parents sort to teachers who are known to have high µj , but there is no
sorting on the basis of ⌧j � µj (perhaps because it is unknown), then X = .
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these are as sensitive to the inclusion of controls for observables as are the
corresponding short-run quasi-experimental estimates.

4.2 Results

The North Carolina data do not have measures of college enrollment, teen
childbearing, or adult earnings, as examined by CFR-II. In their place, I fo-
cus on five outcomes that can be measured in high school records: Whether
the student graduated from high school; whether she stated on a high school
exit survey that she planned to attend college after graduation; whether she
planned specifically to attend a four-year college; her high school grade point
average; and her high school class rank. These are more proximate than CFR-
II’s outcomes, which mostly measure post-high-school experiences. They also
vary in their availability; I focus on cohorts for which they are available for
most students. Students who do not appear in the North Carolina high school
records are excluded from this analysis, while those who drop out of high
school are assigned as non-college-bound.

Columns 2-4 of Table 5 present observational estimates of , from CFR-
II in Panel A and from the North Carolina sample in Panel B. The closest
alignment between my long-run outcomes and those examined by CFR is for
college attendance: I observe self-reported plans as of high school, where CFR-
II observe actual enrollment at age 20. The basic observational analysis, in
Column 2, indicates that a one standard deviation increase in teacher VA is
associated with a 0.82 percentage point increase in the teacher’s impact on
college enrollment in New York, and with a 0.60 percentage point increase in
the teacher’s impact on college enrollment plans (and a 1.35 percentage point
increase in the impact on four-year college enrollment plans) in North Carolina.
I also find positive effects on high school graduation (0.34 percentage point),
on high school GPAs (0.022 GPA points), and on class rank (0.54 percentage
point). All are highly statistically significant.

Columns 3 and 4 vary the controls used in estimating long-run VA Ȳjt,
continuing to estimate (5) without controls. In Column 2, the residualization
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uses just the covariates from the test score VA model. In Column 3, CFR-II
add parental characteristics, drawn from tax returns. These characteristics are
not available in the North Carolina data, so I do not repeat these estimates.
In New York, their inclusion reduces the estimates of  by 10-20%, suggesting
that bias in Ȳjt that derives from the simpler specification is correlated with
µ̂jt. Column 4 replaces the parental characteristics with students’ two-years-
ago test scores. These estimates are similar to those in Column 3 in New
York; in North Carolina, they are mostly smaller than in Column 2, though
one (four year college plans) is larger.

Columns 5 and 6 return to the baseline covariates in the construction of Ȳjt,
but add controls to the second-stage regression of Ȳjt on m̂jt. Column 5 uses
all of the covariates from the test score VA model, averaged at the teacher-year
level; Column 6 further adds teacher-level means of these (aggregating over all
of the years that the teacher is observed). All of the ̂X coefficients are much
smaller than the corresponding ̂ estimates in Column 2, by 14-45%.35

There is every reason to expect that adding the additional family charac-
teristics used in Column 3 (which are not available in the North Carolina data)
would lead to additional diminution of the estimated effects. The pattern of
results, with sensitivity both to the choice of Xit variables in the construction
of long-run-outcome VA (Columns 2-4) and to the inclusion of X̄jt variables
in the second-stage (Columns 5-6), casts doubt on the interpretation of any of
the observational estimates as reflecting . While this cannot be ruled out –
the reduced coefficients in Columns 5-6 of Table 5 could be attributable to dif-
ferences between  and X produced by sorting on the sole basis of the portion
of teachers’ long-run effects that is orthogonal to their test score effects – there
is little basis for confidence in the observational model’s exclusion restrictions.

Table 6 turns to quasi-experimental estimates of . Column 2 reports
estimates of the association between the change in mean VA, �Qsgmt, and
the change in mean unadjusted outcomes, �Ȳ

⇤
sgmt, as examined by CFR-II.

35Responding to an early draft of this comment, CFR (2014c) pointed out that estimates
like those in Column 5 and 6 might be biased downward relative to X by measurement
error in test score VA. I obtain nearly identical results with a 2SLS estimator that adjusts
for measurement error, indicating that this is not an important issue. See Rothstein (2014).
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In their preferred specifications, and in contrast to CFR-I, CFR-II include all
classrooms in their school-grade-subject-year means, assigning teachers with
missing VA predictions the grand mean. I follow that here. Estimates are
mostly smaller than the original observational estimates in Table 5, Column
2, and all are much less precise; nevertheless, four of the five are statistically
significant. Column 3 adds a control for the change in the mean prior-year
score at the school-grade level. Each of the point estimates falls substantially,
by at least one-third (and, in the case of the GPA and class rank effects, by
over 60%), and none of the adjusted coefficients are significant. When adjusted
for observables, the quasi-experimental design offers no evidence that teachers’
VA is associated with their long-run effects.

5 Discussion

The first result of my investigation is that essentially all of the empirical results
reported by CFR-I and CFR-II from their analysis of New York City students
are reproduced, nearly exactly, in data from the North Carolina public schools.
Given the dramatic difference in settings, this is remarkable.

But further investigation indicates that CFR’s analysis cannot support
their conclusions. When I probe CFR-I’s test for forecast bias in measured
teacher VA, I find that teacher switching does not create a valid quasi-experiment
in North Carolina. Measured teacher turnover is associated with changes in
student quality, as measured by the students’ prior-year scores or just by their
demographic characteristics. When changes in observed student quality are
controlled, CFR-I’s key coefficient �̂ is around 0.9, precisely estimated, and
highly significantly different from one.

The apparent endogeneity of teacher switching appears to be driven, at
least in part, by CFR-I’s exclusion of some teachers and classrooms from their
quasi-experimental sample. When I include all classrooms, the evidence for
endogeneity is weaker, but the forecast bias coefficient falls to around 0.85 and
is much less sensitive to the inclusion of controls.

The � parameter identified by CFR-I’s quasi-experiment is only indirectly
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related to the quantity of interest, which is the magnitude of biases in individ-
ual teachers’ VA scores, V (bj). If one assumes that these biases are orthogonal
to teachers’ causal effects, my preferred estimate of �̂ = 0.85 implies that the
variance of the portion of student sorting bias that is permanent within teach-
ers (and thus impossible to remove by averaging over several years) is about
18% of the variance of teachers’ causal effects. �̂ = 0.9 would correspond to
a variance ratio of 11%. These are roughly in the middle of the range that
Rothstein’s (2009; 2010) simulations established as consistent with the data.36

Thus, while CFR-I’s strategy narrows the plausible range, it does not sup-
port the conclusion that the true value is at one end of that range. Moreover,
teacher-level bias is larger if biases are negatively correlated with causal effects
(as found by Horvath, 2015; Angrist et al., 2015a). With a correlation of -0.3,
teacher-level bias is 24% with � = 0.9 and 32% with � = 0.85.

To illustrate the potential importance of biases of this magnitude, assume
away sampling error – imagine that we observe µ̃j ⌘ µj + bj directly, without
error, but that we cannot distinguish the two components. Further suppose
that teachers’ true effects and the biases in their VA scores are both normally
distributed. With � = 0.85 and corr (µj, bj) = 0, over one-quarter of teachers
with µ̃j in the bottom ten percent will have true causal effects µj that are
outside the bottom decile.37 If corr (µj, bj) = �0.3, the misclassification rate
rises to over one-third.

This suggests that policies that use VA scores as the basis for personnel
decisions will be importantly confounded by differences across teachers in the
students that they teach. Teachers with unusual assignments will be rewarded
or punished for this under VA-based evaluations. This limits the scope for
improving teacher quality through VA-based personnel policies (Rothstein,

36CFR-I’s VA model is most similar to Rothstein’s (2010) “VAM2.” A variance ratio of
11% corresponds almost exactly to the estimate in Table 7, Panel B of Rothstein (2010)
(i.e., to a ratio of the standard deviation of the bias to that of the true effect of 0.33), while
a variance ratio of 18% is quite close to that in Panel C.

37In reality, sampling error will also play a role. If decisions are made based on the average
of three annual measures of µ̃j , each with reliability 0.4 (roughly corresponding to estimates
of VA score reliability), nearly half of teachers identified as in the bottom decile will have
true µjs outside of it.
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2015). It will also distort teacher assignments as teachers react to the result-
ing incentive, potentially depressing educational efficiency and offsetting any
teacher quality improvements.

Section 4 revisits CFR-II’s estimates of the association between teacher
VA and teacher effects on students’ long-run outcomes. These were in many
ways the most important portion of the CFR results, as they suggested that
retaining low-VA teachers has extremely important consequences for students’
long-run outcomes – that “good teachers create substantial economic value,
and VA measures are useful in identifying them” (CFR 2012).

But these results turn out to depend implausible assumptions. CFR-II’s
“controls” for student observables were implemented in a non-standard way.
The conditions required for their estimates to be consistent are quite implau-
sible. Moreover, the estimated long-run effects of high-VA teachers are much
smaller when observable differences in students across teachers are controlled
directly, both in observational and quasi-experimental analyses. In the more
credible quasi-experimental estimates, point estimates are uniformly smaller
(more negative) when controls for changes in student observables are con-
trolled, and none are statistically significantly different from zero.

As the North Carolina data have only limited information about family
backgrounds and longer-run outcomes, I cannot fully explore teachers’ long-run
effects. But my results are sufficient to re-open the question of whether high-
VA elementary teachers have substantial causal effects on their students’ long-
run outcomes, and even more so to call into question the specific magnitudes
obtained by CFR-II’s methods.

Across both investigations, where I am able to estimate the specifications
that CFR report, I obtain substantively identical results in the North Carolina
sample. CFR have confirmed (in personal communication) that many of my
key results obtain in their data, as have Bacher-Hicks et al. (2014) in Los
Angeles. It thus seems likely the remainder of my results would generalize
across samples as well. The results are also robust to specifications that address
a number of objections that CFR (2014e; 2015b) raised in response to an initial
draft of this comment, as discussed in the Appendix, which also includes a
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rejoinder to CFR’s (2015a) Reply.
I conclude that the quasi-experimental methodology proposed by CFR-I,

while a major advance in the field, does not support their substantive conclu-
sions. The available evidence suggests that VA scores – in New York, North
Carolina, Los Angeles, and likely elsewhere – are moderately biased by stu-
dent sorting, with a magnitude sufficient to create substantial misclassification
rates in VA-based evaluation systems. There is, moreover, no strong basis for
conclusions about the long-run effects of high- vs. low-VA teachers, which in
the most credible estimates are not distinguishable from zero.
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Revisiting the Impacts of Teachers: Appendix

There are three appendices. Appendix A compares results from each of CFR-
I’s analyses to those obtained when the analyses are reproduced in the North
Carolina data. Appendix B presents alternative specifications aimed at testing
for so-called “mechanical” effects and robustness to alternative methods for
handling teachers with missing VA predictions. Appendix C responds to CFR’s
(2015a) critique of my comment.

A Reproduction of CFR-I Results

Appendix Tables A1-A7 present CFR-I’s results from New York in parallel
with reproductions, using CFR’s (2014f) code, in data from North Carolina.

Table A1 presents student-level summary statistics (from CFR-I’s Table 1,
Panel A). Free lunch and minority shares are lower in North Carolina than
in New York, but (surprisingly) the recorded English language learner share
is higher. In North Carolina, this variable and special education status are
missing from 2009 onward; summary statistics pertain only to those with non-
missing data.

Table A2 presents CFR-I’s Table 2. Autocovariances are similar in the
two samples for elementary English teachers, but higher in the North Carolina
sample for elementary math teachers. Similarly, in English the two samples
yield nearly identical estimates of the standard deviation of teachers’ VA, net
of sampling error, but in math the North Carolina sample yields an estimate
about one-fifth larger than does CFR-I’s sample.

Figure A1 displays the autocorrelations graphically. In both samples, the
autocorrelations are higher in math than in reading; they are also higher in
each subject in North Carolina than in CFR-I’s sample. Where CFR-I found
that the autocorrelations stabilize at lags longer than 7, the North Carolina
sample suggests that they continue to decline out to the end of the sample.

Table A3 presents results from CFR-I’s Table 3. (I do not reproduce their
Column 3, as their code archive does not make clear how their dependent
variable is constructed.) Results are broadly similar. In Column 2, my coeffi-
cient (0.009) is significantly different from zero where theirs (0.002) is not, but
both are small in magnitude. Table A4 presents estimates from CFR-I’s Table
4. Many of these are presented elsewhere as well; they are included here for
completeness. I do not reproduce CFR-I’s Column 5, as my North Carolina
sample excludes middle school grades. Again, all estimates are strikingly simi-
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lar between the two samples. Table A5 presents estimates from CFR-I’s Table
5. Estimates are quite similar, despite the higher share of teachers assigned
predicted VA scores of zero in Column 2 in my sample (27.4%) than in CFR-I’s
(16.4%). Appendix B presents additional relevant results.

Table A6 reproduces CFR-I’s Table 6. Notably, the North Carolina results
indicate negative forecast bias in rows 1-6. But results are generally quite
similar.

Finally, Table A7 presents selected estimates from Table 2 in CFR-I’s on-
line appendix. These are coefficients of regressions of student characteristics
on their teachers’ predicted VA. Raw regression coefficients are attenuated be-
cause the predicted VA measures are shrunken, and thus have lower variance
than the teachers’ true effects. CFR-I multiply their coefficients by 1.56, the
average ratio of the standard deviation of true effects to the standard devia-
tion of predicted effects. In North Carolina, this ratio is 1.36, so coefficients in
Panel B are multiplied by this. Estimates are broadly similar, though there is
perhaps less sorting of high-prior-achievement students to high-predicted-VA
teachers in North Carolina than in CFR-I’s sample. One notable difference
is that minority students have lower-predicted-VA teachers, on average, than
non-minority students in North Carolina, but not in New York.

B Additional specifications

B.1 Mechanical effects

Responding to an early draft of this comment, CFR (2014d) suggested that
the failure of the placebo test might be due to so-called “mechanical” effects –
to factors that influence both prior year scores and measured teacher VA (but
perhaps not actual teacher effectiveness). Specifically, CFR note that data
from t� 2 is used both to predict the VA of teachers in t� 1 and t, and thus
to compute �Qsgmt, and for the prior-year scores of t�1 students. This could
create a spurious correlation between �Qsgmt and the change in prior year
scores. In Table 2 I found that the placebo test failed even when only non-test
outcomes were used to measure student preparedness. This demonstrates that
test dynamics cannot possibly account for the result. Nevertheless, in Table
B1 I explore several alternative specifications aimed at removing the specific
mechanical effects that CFR suggest.

Row 1 presents baseline estimates, repeated from Tables 2 and 3. Row 2 is
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identical but with standard errors clustered at the school level; this increases
standard errors by about one-third.38

CFR (2014d; 2015a) suggest that one source of potential mechanical effects
is teachers who teach the same cohort of students in multiple years as they
progress across grades. If a teacher taught in grade g�1 in t�2 and then taught
the same students in grade g in t�1, then the both the average VA in grade g

in t� 1 (and thus �Qsgmt) and the average lagged scores of grade g students
in t � 1 will reflect her effectiveness.39 CFR (2014d) propose addressing this
by instrumenting for the change in VA, �Qsgmt, with a modified measure that
excludes teachers who taught g � 1 in t� 2 or t� 1. This is implemented by
setting predicted VA for these teachers to zero.

In North Carolina, less than 4% of teacher mobility consists of teachers
following students. Not surprisingly, when I modify �Qsgmt to exclude teach-
ers who taught grade g � 1 in t � 2 or t � 1, or who taught grade g � 2 in
t� 3 or t� 2, the modification makes little difference. The modified version of
�Qsgmt is correlated 0.96 with the original version, and the first-stage coeffi-
cient is 0.98. Estimates of my key specifications are shown in Row 3 of Table
B1. When classrooms with missing VA scores are excluded, the association
with the change in prior-year scores is reduced but remains significant, and the
� estimate is hardly changed. Note that the no-follower instrument involves
setting some teachers’ VA predictions to the grand mean, and thus relies on
the same assumption of within-school independence as does the inclusion of
teachers with missing leave-two-out predictions, also set to the grand mean.
There is thus no set of assumptions that can justify the subsample specifica-
tions in columns 1-3. When all classrooms are included, in columns 4-6, the
placebo test coefficient is no longer significant, but the � coefficient from a
specification without controls falls to match that in the specification with con-
trols. I thus conclude that “follower” teachers might contribute slightly to the
placebo test violation, but that recognition of this phenomenon has no effect

38CFR-I’s main results cluster at the school-by-cohort level. School-level clustering is
more general. Moreover, I present below IV specifications with school-year fixed effects; it
is computationally difficult to cluster these at the school-cohort level.

39This is a source of a mechanical association in the differenced specification only if the
teacher leaves the school or grade in t; otherwise, her VA does not contribute to the t � 1
to t change. Note also that “following” is a problem for the quasi-experimental analysis as
well as for the placebo test. The quasi-experimental analysis is designed to test whether
VA scores accurately forecast the impact of grade-g teachers on their students’ learning in
grade-g; if a portion of the �̂ coefficient reflects contributions that the same teachers made
to students when they were in grade g � 1, this would need to be controlled in order to
isolate the causal effect of interest.
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on my conclusions regarding forecast bias.40

CFR (2014d; 2015a) also suggest that school-year-subject shocks could
create mechanical, spurious failures of the placebo test: A positive shock to a
school in t � 2 will raise both the predicted VA of the school’s t � 1 teachers
and the prior-year scores of the t � 1 students. This would be absorbed by
school-year effects already included in the main specifications if it were com-
mon across subjects, but subject-specific shocks would not be. CFR (2014d;
2015a) propose to address it by including school-subject-year fixed effects. I
implement this in Row 4. This halves the number of degrees of freedom, leav-
ing only three or fewer observations per cell. Standard errors are larger here.
The quasi-experimental estimates in Columns 2 and 3 rise, and I cannot re-
ject � = 1 in Column 3. However, in the preferred sample that includes all
classrooms (assigning VA predictions of zero to teachers with missing data),
the additional fixed effects make little difference at all, and I decisively reject
� = 1. Row 5 presents a specification with both school-subject-year effects
and instrumentation for follower teachers. The main placebo test coefficient
is insignificant here, but my preferred forecast bias coefficient (in column 6) is
unchanged, at 0.89, and remains significantly different from 1.

The inclusion of school-subject-year effects is not the only way to address
the possibility that common shocks would affect both teachers’ VA predictions
and students’ lagged scores. An alternative, more consistent with the overall
research design, is to exclude t� 2 data from the predictions of teacher VA in
years t� 1 and t. “Leave-three-out” VA predictions, ensure that there is zero
overlap between the scores used to construct the VA scores and those used for
the dependent variable in the placebo test, as the latter is based only on data
from t � 2 and t � 1. Row 6 presents estimates using these leave-three-out
VA predictions. They are quite similar to the baseline estimates, if anything
indicating larger selection problems and smaller quasi-experimental estimates.
Row 7 combines the leave-three-out VA scores with the no-follower IV, with
quite similar results

CFR (2015a) point out that with serial correlation in the school-year-
40I have also explored specifications analogous to those in Columns 3 and 6 where I

instrument for the change in mean prior-year scores with a modified version that excludes
students of teacher “followers.” This has no effect on the results. When CFR (2015a)
estimate the specification in Column 1, the coefficient is insignificantly different from zero,
though this coefficient is significant in Los Angeles (Bacher-Hicks et al., 2014). This may be
the sole substantively important difference in empirical results across the three samples. In
any event, when CFR (2015a) use the “no followers” design for the main quasi-experimental
specification (as in Column 2), they estimate �̂ = 0.92 and reject the null hypothesis that
� = 1. This is quite similar to my results.
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subject shocks, a shock in t � 3 would influence leave-three-out VA scores
and be correlated with the shock to prior-year scores for the t� 1 cohort, po-
tentially biasing leave-threee-out placebo test. Such serial correlation would
create a similar bias in the CFR-I quasi-experiment, as t� 2 shocks enter into
VA scores and would be similarly correlated with the shock to t � 1 scores,
and indeed one would expect the leave-three-out strategy to reduce bias.

Nevertheless, rows 8 and 9 present estimates that use leave-four-out and
leave-five-out VA scores that exclude not just t� 2 but also t� 3 and (in Row
9) t � 4 data from the calculations. Results are extremely stable. In row 10,
I take this to the logical extreme, using only data from t + 1 and thereafter
to forecast (backcast) VA in t� 1 and t. This specification, proposed by CFR
(2014d), should entirely eliminate any mechanical effect of the form that CFR
(2014d; 2015a) propose, but estimates are basically unchanged – if anything,
the forecast bias coefficient falls from the baseline specification (�̂ = 0.83 vs.
0.86).

Taking the various specifications in Table B1 together, along with the non-
test placebo analysis in Table 2, the evidence is clear that mechanical effects
cannot account for the results.

B.2 Teachers with missing leave-two-out predictions

CFR-I’s key VA measure used in each paper is a “leave-two-out” forecast of
a teacher’s outcomes in year t or t � 1 based only on data from prior to
t � 1 or after t. This forecast can be seen as an Empirical Bayes prediction
of the teacher’s impact in t � 1 or t, and by construction is an unbiased
prediction of the VA score in that year. When teachers are observed only in
t � 1 or t, however, there is no other data on which to base this forecast. In
most of their analyses, CFR-I exclude such teachers, and their students, from
their calculation of school-grade-year means. I argue above that this sample
selection biases the key coefficient �̂ toward the null hypothesis of � = 1.
Following one specification in CFR-I and most of the analysis in CFR (2014b;
“CFR-II”), he includes these teachers and their classrooms, assigning them a
VA prediction equal to the grand mean.

The grand mean is an unbiased prediction of every teacher’s VA, and is the
logical extension of the Empirical Bayes methodology for CFR-I’s leave-two-
out predictions. But the relevant prediction for CFR-I’s quasi-experimental
analysis is of the school-grade-year mean VA, not that of the individual teacher.
If VA is correlated across teachers within schools, then the average of unbi-
ased forecasts for each teacher is a biased forecast of the average VA at the
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school. Failure to account for this would create upward bias in both CFR-I’s
quasi-experimental coefficient �̂ and my placebo test coefficient. Importantly,
this bias arises even if leave-two-out forecasts are available for every teacher.
Avoiding it would require shrinking teachers’ observed performance toward
the school mean rather than toward the grand mean, and using school average
performance rather than the overall average to predict VA for teachers with
missing leave-two-out data.

Table B2 explores alternative strategies for assigning VA predictions to
teachers with missing leave-two-out data. Following CFR (2015a), I use CFR-
I’s leave-two-out predictions for teachers for whom they are available in every
specification in this table, though the above discussion suggests that the should
be changed as well.

Panel A presents CFR-I’s main regression of the year-over-year change in
school-grade-subject mean test scores on the corresponding change in mean
teacher predicted VA. Panel B presents my placebo test, replacing the depen-
dent variable with the change in mean prior year scores. Panel C augments
the Panel A specification with a control for the change in mean prior year
scores.

The first two columns reproduce estimates from the main paper for con-
text: Column 1 leaves the teachers with missing leave-two-out predictions and
their students out of the school-grade-year means, while column 2 includes
them using the grand mean for the teachers’ VA predictions. When the teach-
ers are left out, �̂ = 1.03 (standard error 0.02) when students’ prior scores
are not controlled, and the null hypothesis of � = 1 is not rejected. But the
placebo test fails, with a highly significant coefficient of 0.14, and when stu-
dents’ prior-year scores are controlled the key coefficient falls to 0.93 (0.02)
and the null hypothesis is rejected. When teachers with missing leave-two-out
predictions are included, even the baseline specification in Panel A rejects the
null hypothesis (�̂ = 0.90, SE 0.02). The placebo test result is weaker but still
significant, and the specification that controls for observables yields �̂ = 0.86
(SE 0.02).

Columns 3-5 present results from other imputations. Column 3 uses the
(appropriately shrunken) mean residual of all teachers at the school in all
years other than t � 1 or t to forecast the VA of teachers in those years who
are not seen outside that window. This method would be robust to correlations
among teachers at the same school. Column 4 uses the mean residual of all
teachers across all schools who are observed for two years or less. This captures
the possibility that the teachers with missing leave-two-out predictions may
systematically differ from others. Finally, Column 5 uses the mean for such
teachers at the same school, as in other cases using only data from outside the
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t� 1 to t window.
Results are qualitatively similar across all of the different imputation mod-

els. In each case, the baseline specification in Panel A yields an estimated �̂

between 0.90 and 0.93, all significantly different from one. The placebo test
fails regardness of the imputation used, with the models that use only same-
school data indicating much larger placebo test violations. And when prior
scores are controlled, the key coefficient falls to between 0.85 and 0.89, again
always significantly different from one. It is clear that non-independence of
teacher VA within schools cannot account for my results.

Table B3 takes a different approach to the issue of missing leave-two-out
predictions. Column 2 of CFR-I’s Table 5 suggests a substantial degree of
forecast bias when teachers with missing VA predictions are assigned the grand
mean VA, and as Table 1 indicates the same is true in the North Carolina
sample. But CFR (2015a) point instead to Columns 3 and 4 of CFR-I, Table
5, reproduced for the North Carolina sample in Table A5. These limit the
sample to school-grade-subject-year cells with few (Column 3) or no (Column
4) missing VA predictions, and in each sample they indicate less forecast bias.
CFR (2015a) interpret this as evidence that the imputation algorithm accounts
for the result in Column 2, and argue that the Column 4 result in particular
indicates that VA predictions are unbiased, at least in the subsample of school-
grade-subject-year cells with no missing VA predictions.

But this result is not at all robust. In particular, it evaporates when school-
year fixed effects are added. These fixed effects are included in CFR-I’s main
specifications but omitted without explanation from their Table 5.

The odd numbered columns of Table B3 report the four specifications from
CFR-I’s Table 5. Note that the placebo test coefficients are quite large in
these columns, though the models with controls in columns 1, 5, and 7 yield �

estimates that are not distinguishable from 1 (in large part because the models
without controls yield � estimates well in excess of 1).

As noted, these specifications, following CFR-I, include only year fixed
effects, rather than the school-year effects included in the models that CFR-I
prefer in the rest of their analysis. This raises the possibility of bias from
unmodeled school trends. The even numbered columns of Table B3 add back
the school-year fixed effects.41 This change reduces the placebo coefficients,
which become insignificant in columns 6 and 8. But it also reduces the forecast
bias coefficients. CFR-I’s preferred model, which limits the sample to cells with

41One might worry that the no-missing-data subsample in Column 7 is not large enough
to permit any degree of precision with school-year fixed effects. But standard errors increase
by less than 20% when these are added, much less than the increase (of nearly 100%) when
cells with missing VA predictions are discarded.
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no missing data, yields a forecast bias coefficient of �̂ = 0.92 without controls
and 0.90 (significantly different from one) with a control for the change in prior
year scores. This is broadly similar to what is obtained from the full sample.

C Rejoinder to CFR (2015a)

The exchange between myself and Chetty, Friedman, and Rockoff (CFR) has
involved several rounds of private communication, dating back to 2010, and
a more recent exchange of public drafts and responses. Throughout, it has
been constructive and scholarly, and I have learned a great deal from it. I
am grateful to CFR for their role in it, and the current draft of my Comment
(dated March 2016) reflects many good points that CFR have made.

Nevertheless, CFR and I continue to have sharply different interpretations
of what the empirical patterns mean for the substantive questions under inves-
tigation. My Comment reflects my interpretation; CFR offer a very different
interpretation in their Reply. In this appendix, I discuss the July 2015 version
of CFR’s Reply (CFR 2015a), written in response to the October 2014 version
of my Comment (Rothstein, 2014). CFR may update their Reply to respond
to the revised version of my Comment. If so, I will update this rejoinder. To
ensure a complete record, the original rejoinder (dated March 2016) will re-
main posted on my webpage, at http://eml.berkeley.edu/~jrothst/CFR/
supplement_mar2016.pdf.

I respectfully disagree with many of the conclusions drawn by CFR (2015a),
which in many cases are based on claims that are theoretically correct but turn
out, upon investigation, to be empirically irrelevant. None of the evidence
presented by CFR (2015a) alters the main conclusions of my earlier draft,
which persist in the current version:

1. That the CFR-I (2014a) research design is not a valid quasi-experiment
because the treatment is correlated with observable determinants of the
outcome;

2. That much but not all of the problem derives from CFR-I’s exclusion of a
non-random subset of classrooms from school-grade-subject-year means;

3. That estimates that adjust for differences in observables indicate a non-
trivial but not enormous degree of “forecast bias”; and
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4. That estimates of teachers’ long-run effects are not at all robust and
quite likely to be biased by student sorting.

I begin by laying out CFR (2015a)’s six main arguments, in order of their
importance to my conclusions, along with my responses. I follow this by pre-
senting simulation evidence to support one of these responses. In the interests
of space, I do not discuss other arguments made in CFR’s response that are
less relevant to my conclusions.

CFR (2015a)’s six main arguments are:

1. Examination of prior test scores is not informative about the validity
of CFR-I’s quasi-experimental research design, because value-added is
estimated from prior test scores and is thus mechanically correlated with
them.

It is theoretically correct that the use of prior test scores in the construction
of the VA measures could create a spurious correlation, making it appear that
changes in teacher VA are not randomly assigned. But in practice, this does
not account for the result. The main text and Appendix B present a number of
analyses that probe this possibility. All indicate that the failure of the placebo
test is real, not spurious. The most definitive is an alternative placebo test
that is based solely on non-test student characteristics (race, gender, special
education, free lunch status, limited English status, grade repetition, etc.).
This test is entirely immune from mechanical correlations, but also shows that
changes in mean teacher VA, as estimated by CFR-I, are significantly related
to changes in student preparedness (see Table 242).

2. The primary source of the correlation between changes in teacher value
added (VA) and changes in prior test scores is common shocks that affect
both. When these so-called “mechanical effects” are addressed via changes
in the specification, the correlation is eliminated.

CFR (2014d; 2014e; 2015a) have advanced this idea in a series of public re-
sponses over the last eighteen months, pointing to potential mechanical effects

42Unless otherwise specified, all table references are to tables in the March 2016 version
of my comment, Rothstein (2016).
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deriving from teachers who follow students across grades or from school-year-
subject-level shocks. As noted above, explanations based on test score dy-
namics cannot possibly account for the placebo test result, as it holds even
when non-test variables are used in place of prior test scores. Moreover, for
each proposed mechanical channel, I have implemented alternative specifica-
tions of the placebo test that close off that channel. In particular, I close
off the teacher-follower channel by instrumenting with VA changes computed
only over non-follower teachers, and I close off the school-year-subject shock
channel by using “leave three out” VA measures that do not rely on data from
t�2 in computing VA predictions for t�1 or t. Results are remarkably stable
across specifications (see Appendix Table B1).

CFR (2015a) suggest that there may be school-level shocks that are corre-
lated across years, so that shocks in t�3 influence both VA predictions for t�1
teachers (even when t� 2 data are excluded) and the prior year scores of t� 1
students, which are measured in t � 2. Serially correlated school-level shocks
could produce the failure of my placebo test even when I use leave-three-out
VA scores that do not rely on t� 2 data.

To ensure that my results are not driven by this channel, I estimated spec-
ifications that exclude all data from several years before the {t� 1, t} window
from the VA predictions. If in fact the placebo test result derived from serially
correlated shocks, the coefficient should decline as more years are excluded.
But in fact this has essentially no effect on the results – even when I base
VA predictions solely on future data. Thus, while CFR-I present simulation
evidence that serially correlated shocks could drive the results, the empirical
evidence from real data indicates that they do not.

It is also worth noting that the dynamics that CFR (2015a) propose as
sources of mechanical effects would in general invalidate not just the placebo
test but also CFR-I’s quasi-experimental research design itself, and would lead
CFR-I to understate forecast bias. School-year or school-subject-year shocks
that are correlated between t � 2 and t � 1 would invalidate the design, as
the leave-two-out teacher VA predictions for t � 1 would be influenced by
shocks correlated with those to students’ t � 1 test scores.43 It would take a
very particular dynamic structure to generate correlations between t � 3 and
t� 2 scores but not between those in t� 2 and t� 1. Similarly, the presence

43CFR (2015a) present a specification with school-subject-year FEs. But with only two
or three observations (grades) per school-subject-year cell, these specifications rely very
heavily on a strict exogeneity assumption that is prima facie violated by teachers who
switch grades within schools. In my explorations with simulated data – including with the
data generating process of the simulations used in CFR (2015a)’s Table 4 – I have found
that these specifications are very poorly behaved.
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of meaningful numbers of “follower” teachers would imply that the outcome
in the quasi-experiment reflects not only the quality of the grade-g teachers
but also the (correlated) quality of grade g � 1 teachers, and thus that the
quasi-experimental coefficient overstates the parameter of interest, �.

3. The augmented quasi-experimental specification that includes a control
for the change in prior year scores yields a biased estimate of the forecast
bias coefficient �.

Again, this is theoretically possible, but the claim that it is relevant in prac-
tice is pure speculation unsupported by evidence. CFR (2015a) hypothesize
that the change in prior year scores has two components, with one component
correlated with the change in VA but not with the change in end-of-year scores
and the other correlated with end-of-year scores but not with VA. This might
be a reasonable hypothesis if the “mechanical effects” claims discussed above
held up. Even here, quite restrictive dynamic structures would be needed to
generate mechanical effects from sources that are uncorrelated with the de-
pendent variable in CFR-I’s analyses. CFR (2015a) argue for “nonparametric”
specifications, but their specifications and simulations generally rely on quite
strong implicit assumptions. But as noted above, the evidence does not sup-
port CFR’s claims about mechanical effects. Without them, while anything
is possible, the only reasonable conclusion is that CFR’s (2015a) conclusions
rely on quite speculative, unsupported assumptions.

It is also possible, and more likely, that both the specification without
a control for prior year scores (as in CFR-I) and one with such a control
(as in my preferred analyses) are biased by unmeasured components of the
endogeneity of teacher VA changes. I do not claim that the specification with
controls is highly credible. But in the presence of clear evidence that the
quasi-experimental treatment is not randomly assigned, and that this is not
attributable to CFR (2015a)’s hypothesized mechanical effects, a specification
with controls is preferable, in my view, to one that does nothing to address
the endogeneity of treatment. Moreover, I show (see Table 3) that the top-line
result of forecast bias around 10-15% (i.e., of �̂ around 0.85-0.9) is robust to
several ways of addressing the endogeneity, which adds to my confidence in
the result.

4. An analysis restricted to school-grade-subject-year cells without missing
data is the most definitive way to address concerns about sample selection
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due to missing data, and validates CFR-I’s conclusion that VA scores are
forecast unbiased.

I disagree that this is the most definitive way to address concerns about sample
selection due to missing data – it requires discarding between three-quarters
(New York) and four-fifths (North Carolina) of the school-grade-subject-year
cells, and estimates are quite imprecise. Moreover, the remaining sample in-
cludes fewer teachers who are new to teaching or to the sample grades, and
forecast bias in this subsample might be different from that in the broader
population.

More importantly, as discussed in Section B.2, above, the subsample anal-
ysis does not validate the conclusion of no forecast bias. First, I find that the
placebo test coefficient is quite large and statistically significant even in the
complete data subsample. Second, CFR-I inexplicably drop the school-year
fixed effects from their preferred specification when they analyze the complete
data subsample. When I include them the estimate of � is 0.918 without con-
trolling for prior year scores and 0.899 (and significantly different from one)
when this control is included. This is broadly similar to what is obtained from
the full sample.

Thus, at most this subsample analysis shows that not all of the problem
with CFR-I’s specification is attributable to their exclusion of a non-random
subset of classrooms from school-grade-subject-year means. It does not demon-
strate (or even point in the direction) that the design is valid, or that forecast
bias is zero, even locally for the small subset of schools without missing data.
CFR (2015a)’s statement that “[t]his approach consistently yields estimates
of forecast bias close to zero in both the CFR and North Carolina datasets”
is incorrect as it applies to North Carolina, and the single specification that
CFR have reported from their dataset is not enough to demonstrate the point
there either.

5. The inclusion of all classrooms in the analysis, using grand mean impu-
tation, generates downward-biased estimates of the key parameter �.

We are in agreement that analyses that include all classrooms are not definitive,
but rest on the appropriateness of the model used to predict teachers’ VA. I
focus on specifications that use the grand mean because this is the strategy
proposed by CFR, who use it throughout their analyses for some (most of
CFR-I’s specifications) or all (one failed robustness test in CFR-I, and the
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main specifications of CFR-II) of the classrooms with missing data.44 It is
also consistent with CFR’s prediction model (seen as an example of Empirical
Bayes methods) for classrooms that have data.

That said, the claim that my use of grand mean predictions accounts for
my results is incorrect. CFR (2015a) are correct that positively correlated
VA across teachers within schools could lead to attenuation with grand mean
predictions.45 But again, this theoretical point is not empirically relevant.
Results of both the placebo test and the forecast bias estimation are robust to
a variety of alternative prediction strategies, including some that are robust
to non-independence of teacher VA within schools (which is the source of bias
under grand mean predictions). See the discussion in Section B.2, above. And
even when I follow CFR-I’s preferred strategy of excluding classrooms without
teacher VA predictions, the results are quite clear that � is less than one in
any specification that does anything to address the endogeneity of changes in
teacher VA (Table 3).

Four other points are worth noting about the imputation issue:

• CFR (2015a)’s attenuation argument may help to explain why some of
the placebo test coefficients are smaller when all classrooms are included
than when they are not (see Table 2); it suggests that the failure to re-
ject the placebo test null hypothesis in some all-classroom specifications
should not be taken as support for the exclusion restriction.

• CFR (2015a) present a simulation to demonstrate the bias from the
grand mean imputation, but this uses a counterfactually large intra-
school correlation of teacher VA (⇢ = 0.35). When I use a value that
is empirically grounded (⇢ = 0.2), the bias in the simulations is quite
small. CFR’s (2015a) simulation is explored below in subsection C.1.

44Throughout all of their quasi-experimental analyses, CFR-I and CFR-II impute VA
scores of zero for teachers observed in t�1 and t but not in other years. At issue is whether
to apply the same imputation to teachers observed only in a single year, as is done in CFR-I’s
Table 5, Column 2 and throughout CFR-II, or to exclude these teachers and their students
from the analysis, as is done elsewhere in CFR-I. I see no basis for viewing the grand mean
as the correct prediction for the first group of teachers but not for the second, and CFR
have never offered an explanation for this.

45They are also correct that using all classrooms on one side of the regression and a
subset on the other can lead to biases. An earlier draft of my comment (Rothstein, 2014)
presented estimates of this form to build intuition for the full-sample results. CFR (2015a)
quite reasonably objected that these specifications were not very informative. They have
therefore been removed.
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• CFR’s simulation assumes that there are no differences across classrooms
in students’ prior achievement. My argument for the importance of ac-
counting for classrooms with missing teacher VA was predicated on the
empirical result that students’ prior scores are positively correlated with
teacher VA, so excluding a classroom has effects of the same sign on
mean teacher VA and mean student preparedness that bias the �̂ coeffi-
cient upward. It is thus not surprising that CFR’s simulation shows no
bias from excluding classrooms with missing VA, as it fails to include the
relevant features of the real data. Where the real data are concerned,
CFR (2015a) may object to the particular imputation model proposed by
CFR-I, but they do not dispute that excluding classrooms with missing
data, as in CFR-I’s main analyses, biases �̂.

• Finally, the data generating process for CFR (2015a)’s simulation vio-
lates the exclusion restrictions that CFR-I require to identify �, even
with random assignment and complete data, as these restrictions rule
out non-zero intra-school correlations. If the intra-school correlation is
non-zero, the change in the average of unbiased predictions of individual
teachers’ VA is not an unbiased prediction of the change in the average
VA. If the correlation is positive, CFR-I’s methods will likely overstate
the change in VA, biasing �̂ upward. This could offset bias from endoge-
nous teacher switching (or from endogenous sample selection).

These points are discussed in more detail in Section C.1, below.
One final point: While we agree that specifications that include all class-

rooms rest on the appropriateness of the model used to predict teachers’ VA,
it is also true that specifications, like those that CFR-I prefer, which exclude
a non-random set of classrooms also rest on assumptions. These assumptions
are quite implausible – they require that student preparedness be uncorrelated
with teacher VA. It is empirically the case that students’ observables are cor-
related with teacher VA; whether their unobservables are as well is the entire
point of the CFR-I exercise. So while it is reasonable to disbelieve specifica-
tions that rely on imputations, it is not reasonable to treat those that simply
exclude teachers with missing data as unbiased.

6. It is not the case that a regression of long-run outcomes on teachers’ test
score VA, with controls for observables, is consistent under more general
conditions than is CFR-II’s two-step procedure.
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This point responds to an earlier version of my comment (Rothstein, 2014).
CFR (2015a)’s discussion of this issue clarified it substantially for me, and the
revised comment has been rewritten with this in mind.46 I believe that the
main point stands.

CFR are correct that the exclusion restrictions under which my approach
identifies  do not strictly nest those under which CFR-II’s approach identifies
that parameter, and that when students sort into classrooms on the basis of
teachers’ impacts on long-run outcomes (i.e., on the basis of ⌧j) then their
approach can be consistent for  even when mine is not. Nevertheless, I
remain unconvinced that their exclusion restrictions are remotely plausible.

A useful way to see it is that regressions with controls identify a potentially
different parameter, X , under weaker – still not very plausible, but more so
– restrictions. The two parameters are equal unless students are sorted into
classrooms on the basis of the portion of teachers’ long-run effects that cannot
be predicted by the teachers’ test score value added. I view this kind of sorting
as implausible – I think it unlikely that parents can discern teachers’ long-run
impacts – so I think the parameters are likely to be quite similar, and I view
the difference between the ̂ and ̂X estimates as a sign that the former is
biased due to failures of CFR-II’s exclusion restrictions.

One may or may not interpret ̂X as a good estimate of X . But the
evidence clearly indicates that the conditions required for CFR-II’s approach
are not satisfied. Thus, we do not have reliable estimates of . In my view, the
fact that results are quite different under my approach is a strong indication,
though not definitive proof, that the CFR-II strategy overstates teachers’ long
run impacts by a great deal.

C.1 Simulations of the effect of missing data

Under point 5, above, I referred to CFR’s (2015a) simulation evidence
about the effect of different ways of handling teachers with missing VA predic-
tions. In CFR’s simulation, VA is unbiased – indeed, it is measured without
any error at all. Thus, the true value of � is one. CFR (2015a) show that in
this case, �̂ is close to one when data are available for all teachers or when

46In personal communication regarding the long-run analysis, CFR emphasized measure-
ment error in teacher VA. Responding to this, I (Rothstein, 2014) presented IV specifications
designed to eliminate attenuation due to measurement error in an explanatory variable, with
zero impact on the results. CFR now point to a different dynamic, so I no longer emphasize
the IV results.
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teachers with missing data are excluded from the analysis, but that �̂ is only
0.88 when teachers with missing data are included with their predicted VA
scores set to zero. This last result is driven by an assumption that VA is posi-
tively correlated among teachers in the same school; failing to account for this
in assigning VA predictions to teachers without them leads to overstating the
magnitude of changes in VA.

But there are two big problems with this simulation. First, the intra-class
correlation (ICC) in the simulation is set to 0.35, which is far too large. CFR
(2015a) report that the ICC in the actual New York data is only 0.2; I obtain
a somewhat smaller value, around 0.16, in North Carolina. An ICC of this
magnitude does not cause much of a problem for the grand mean predictions.
Table B4 reproduces CFR (2015a)’s simulation results in row 1, then reports
results using a more realistic ICC of 0.2 in row 2. With grand mean predictions,
�̂ = 0.93, much closer to one than in the large-ICC simulation or than in the
empirical results from either the New York or the North Carolina samples.

Second, CFR (2015a)’s simulation assumes that teachers’ VA is known
with certainty. In fact, a key portion of the CFR-I empirical strategy is to
predict each teacher’s VA in one year based on noisy measures of her perfor-
mance in other years, and these predictions assume the ICC is zero. With a
non-zero ICC, CFR-I’s methods do not identify the degree of forecast bias.47

Rows 3 and 4 of Table B4 extend the CFR (2015a) simulation to include pre-
dictions of VA scores based on observed outcomes in other years. I assume
that each teacher is observed in four years other than the ones used for the
quasi-experimental analysis, and that each year provides an independent noisy
signal of the teacher’s underlying VA with reliability 0.4. I do not allow drift
in teacher quality across years. I use a high ICC of 0.35 in Row 3, and a lower
value of 0.2 in Row 4. These simulations yield estimates of � that are well
below one (0.86 and 0.93, respectively) even when VA predictions are avail-
able for all teachers. This suggests that with a positive ICC, an estimate of
�̂ = 1 will obtain only if �̂ is upward biased from some other source, such as an
association between �Qsgmt and the change in prior determinants of student
outcomes.

47Specifically, CFR-I construct �Qsgmt as the change in the average of unbiased predic-
tions (if � = 1) of teachers’ VA scores. But their Assumption 3 requires that �Qsgmt be
an unbiased predictor of the change in the average true VA. When the ICC is not zero,
the average of unbiased predictions is not an unbiased prediction of the average. Thus, a
non-zero ICC implies that CFR-I’s Assumption 3 is violated, and thus the b coefficient from
CFR-I’s equation (15) does not identify �. CFR (2015a)’s characterization of their simu-
lation (“simulated data in which none of CFR’s identification assumptions are violated”) is
therefore incorrect.
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In other words, it is odd that CFR (2015a) defend their methods by point-
ing to the inappropriateness of grand mean imputation in the presence of
a correlation among teachers at the same school, as (a) CFR-I use exactly
this imputation for many teachers throughout their analysis and (b) CFR-I’s
entire empirical strategy is predicated on an (implicit) assumption that this
correlation is zero. Moreover, in CFR (2015a)’s own simulation an empirically
reasonable value of the ICC does not lead to enough attenuation to account
for the empirical results.
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Notes:!Panel!A!is!taken!from!CFR5I,!Figure!4A,!and!corresponds!to!Table!1,!Column!1,!Panel!A.!Panel!

B!is!constructed!similarly!using!North!Carolina!data!and!corresponds!to!the!sample!used!in!Table!1,!
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teacher!VA,! after! residualizing! each! against! year! (Panel!A)! or! school5year! (Panel!B)! fixed! effects.!

School5grade5year5subject! cells! are! divided! into! twenty! equal5sized! groups! (vingtiles)! by! the!

change!in!average!predicted!teacher!VA;!points!plot!means!of!the!y5!and!x5variables!in!each!group.!

Solid! lines! present! best! linear! fits! estimated! on! the! underlying! micro! data! using! OLS! with! year!

(panel!A)!or!school5year!(panel!B)! fixed!effects;!coefficients!and!standard!errors!(clustered!at! the!
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Panel B. Changes in predicted scores based on parent characteristics
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Figure 4. Effects of Changes in Teaching Staff on Scores across Cohorts

Notes: This figure plots changes in average test scores across cohorts versus changes in aver-
age teacher VA across cohorts, generalizing the event study in Figure 3 to include all changes 
in teaching staff. Panel A is a binned scatterplot of changes in actual scores versus changes in 
mean VA, corresponding to the regression in column 1 of Table 4. Panel B is a binned scat-
terplot of changes in predicted scores based on parent characteristics versus changes in mean 
VA, corresponding to the regression in column 4 of Table 4. See notes to Table 4 for details 
on variable definitions and sample restrictions. Both panels are plotted using the core sam-
ple collapsed to school-grade-subject-year means, as described in Section VC. To construct 
these binned scatterplots, we first demean both the x- and y-axis variables by school year to 
eliminate any secular time trends. We then divide the observations into 20 equal-size groups (vingtiles) based on their change in mean VA and plot the means of the y variable within each 
bin against the mean change in VA within each bin, weighting by the number of students in 
each  school-grade-subject-year cell. The solid line shows the best linear fit estimated on the 
underlying microdata using a weighted OLS regression as in Table 4. The coefficients show 
the estimated slope of the best-fit line, with standard errors clustered at the  school-cohort level 
reported in parentheses.

6 Score = _st +  1.030 * 6 VA
                           (0.021)
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Figure'2'
Bin+Scatter'Plot'of'Change'in'Average'Teacher'Predicted'VA'and'Change'in'Average'

Prior'Year'Score'
'

'
!

Notes:!Figure!is!identical!to!Figure!1,!Panel!B,!except!that!the!variable!plotted!on!the!vertical!axis!is!

the!mean!cohort5over5cohort!change! in!prior5year!(rather!than!end5of5year)!scores! in! the!vingtile!

group.!Sample!and!regression!equation!correspond!to!Table!2,!Column!1,!Panel!A.!

6 Score = _st +  0.144 * 6 VA
                           (0.021)
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Figure'3'
Bin+Scatter'Plot'of'Change'in'Average'Teacher'Predicted'VA'and'Change'in'Average'

Gain'Score'
'

'
!

Notes:!Figure!is!identical!to!Figure!1,!Panel!B,!except!that!the!variable!plotted!on!the!vertical!axis!is!

the!mean! cohort5over5cohort! change! in! gain! scores! (the! student5level! growth! in! scores! from! the!

end! of! one! year! to! the! end! of! the! next)! in! the! vingtile! group.! Sample! and! regression! equation!

correspond!to!Table!3,!Column!4,!Panel!A.!

!

!

6 Score = _st +  0.889 * 6 VA
                           (0.015)
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Dependent variable: Δ Score Δ Score Δ Score 
(Predicted)

Δ Score    
(all 

students)
(1) (2) (3) (4)

Source: T4C1 T4C2 T4C4 T5C2
Change in mean teacher predicted VA 0.974 0.957 0.004
 across cohorts (0.033) (0.034) (0.005)

Change in mean teacher predicted VA 0.877
across cohorts (with zeros) (0.026)

Year fixed effects X X
School x year fixed effects X X
Grades 4 to 8 4 to 8 4 to 8 4 to 8
# of school x grade x subject x year cells 59,770 59,770 59,323 62,209

Change in mean teacher predicted VA 1.097 1.030 0.008
 across cohorts (0.022) (0.021) (0.011)

Change in mean teacher predicted VA 0.936
across cohorts (with zeros) (0.022)

Year fixed effects X X
School x year fixed effects X X
Grades 3 to 5 3 to 5 3 to 5 3 to 5
# of school x grade x subject x year cells 79,466 79,466 54,663 91,221

Notes: Panel A is taken from the indicated Tables and Columns of CFR (2014a); 
Panel B is estimated using the same variable construction and specifications in the 
North Carolina sample. The dependent variable in each column is the year‐over‐
year change in the mean of the specified variable in the school‐grade‐subject‐year 
cell. In Columns 1, 2, and 4, this variable is the end‐of‐year test score. In Column 3, 
it is the fitted value from a regression of end‐of‐year scores on parental 
characteristics taken from tax data (Panel A) or on parental education indicators 
(Panel B). In Columns 1‐3, teachers observed only in a single year are excluded 
from the school‐grade‐subject‐year mean predicted VA, and their students are 
excluded from the dependent variable. In Column 4, these teachers are assigned 
predicted VA of zero and are included, and their students are included in the 
dependent variable. See notes to CFR (2014a), Tables 4 and 5 for additional details 
about the specifications. Standard errors are clustered by school‐cohort.

Table 1. Reproduction of CFR (2014a) teacher switching quasi‐experimental 
estimates of forecast bias

Panel A: CFR (2014a)

Panel B: North Carolina reproduction



Table 2. Assessing the quasi‐experiment via placebo tests

Dependent variable: Δ prior year score
All VA model 
controls

Non‐test VA model 
controls

(1) (2) (3)

Change in mean teacher predicted VA 0.144 0.105 0.035
 across cohorts (0.021) (0.017) (0.009)

# of school x grade x subject x year cells 79,466 78,186 79,466

Change in mean teacher predicted VA 0.092 0.034 0.001
 across cohorts (all classrooms) (0.022) (0.017) (0.010)

# of school x grade x subject x year cells 90,701 88,949 90,203

Δ predicted score given:

Notes: Specifications in Panels A and B are identical to those in Table 1, Columns 2 and 4, 
respectively, but for changes in the dependent variable. In Column 1, this is the year‐over‐year 
change in mean prior year scores in the school‐grade‐subject‐year cell. In Columns 2‐3, it is the year‐
over‐year change in mean predicted end of year scores in the cell. In Column 2, the predictions use 
all of the VA model controls, while in Column 3 only the non‐test controls (indicators for 
race/ethnicity, gender, special education, free lunch status, limited english, and grade repetition; 
missing value indicators for each of these; and class‐ and school‐year‐level means of each) are used. 
Prediction coefficients are identified only from within‐teacher variation. All specifications include 
school‐year fixed effects, and standard errors are clustered by school‐cohort. 

Panel A: Excluding classrooms with missing teacher VA 
predictions

Panel B: Including classrooms with missing teacher VA 
predictions



Table 3. Adjusting the quasi‐experiment for non‐random assignment

Change in 
residual scores

Change in 
gain scores

(1) (2) (3) (4)

Change in mean teacher predicted VA 1.030 0.933 0.931 0.889
 across cohorts (0.021) (0.015) (0.014) (0.015)

Change in mean prior year score 0.675
(0.004)

# of school x grade x subject x year cells 79,466 79,466 78,186 79,466

Change in mean teacher predicted VA 0.904 0.860 0.894 0.832
 across cohorts (0.022) (0.017) (0.015) (0.017)

Change in mean prior year score 0.536
(0.009)

# of school x grade x subject x year cells 91,221 90,701 88,949 90,692

Panel A: Without classrooms missing teacher VA 
prediction

Panel B: Including all classrooms

Change in scoresDependent variable: 

Notes: Specifications in Panels A and B are identical to those in Table 1, Columns 2 and 4, 
respectively, but for changes noted here. In Column 3, the dependent variable is the the year‐over‐
year change in mean residual scores, as defined in equation (2), in the school‐grade‐subject‐year 
cell. In Column 4, it is the year‐over‐year change in mean gain scores, defined as the within‐student 
difference between the end‐of‐year score and the prior‐year score.  Column 2 includes a control 
for the change in the mean score in the prior year. All estimates include school‐year fixed effects, 
and standard errors are clustered at the school‐cohort level.



Table 4. Association between teacher predicted VA and student characteristics

School level
Overall Within school
(1) (2) (3)

Prior‐year test score 0.063 0.028 0.394
(0.005) (0.002) (0.047)

N 357,036 357,036 1,621

Free lunch ‐0.022 ‐0.015 ‐0.106
(0.003) (0.001) (0.031)

N 201,440 201,440 1,470

Minority student ‐0.006 ‐0.009 0.035
(0.003) (0.001) (0.035)

N 357,036 357,036 1,621

Predicted end‐of‐year 0.049 0.021 0.304
test score (0.004) (0.002) (0.046)

N 349,322 349,322 1,621

Predicted college 0.0078 0.0018 0.064
enrollment (0.0008) (0.0003) (0.008)

N 349,322 349,322 1,621

Class level

Notes: Each entry presents the coefficient from a separate regression of the 
indicated variable on the teacher's leave‐one‐out predicted VA score, rescaled 
into teacher‐level standard deviation units (Columns 1‐2), or on the school‐level 
mean of this (Column 3). Column 2 includes school fixed effects. Regressions are 
weighted by the class or school size and standard errors are clustered at the 
school level.



Table 5. Observational analyses of teachers' long‐run impacts

# of classes

(1) (2) (3) (4) (5) (6)

College at age 20 (%) 4,170,905 0.82 0.71 0.74
(0.07) (0.06) (0.09)

College quality at age 20 ($) 4,167,571 298.6 265.8 266.2
(20.7) (18.3) (26.0)

Earnings at age 28 ($) 650,965 349.8 285.6 309.0
(91.9) (87.6) (110.2)

Variables used for within‐teacher residualization of outcomes
  Baseline VA controls X X X

Parent chars. X
Twice lagged scores X

Graduate high school (%) 2,318,646 0.34 0.27 0.24 0.22
(0.04) (0.05) (0.04) (0.04)

Plan college (%) 1,748,911 0.60 0.57 0.41 0.36
(0.07) (0.08) (0.06) (0.06)

Plan 4‐year college (%) 1,748,876 1.35 1.45 0.87 0.73
(0.09) (0.11) (0.08) (0.08)

GPA (4 pt. scale) 1,191,964 0.022 0.009 0.018 0.016
(0.002) (0.002) (0.002) (0.002)

Class rank (100=top) 1,190,117 0.54 0.29 0.43 0.36
(0.06) (0.07) (0.05) (0.05)

Variables used for within‐teacher residualization of outcomes
  Baseline VA controls X X X X

Twice lagged scores X
Controls in observational regression

Baseline (classroom means) X X
Teacher means X

Panel A: CFR‐II

Panel B: North Carolina replication

Notes: See notes to CFR‐II, Table 2. Columns 2‐4 report coefficients of regressions of residualized 
outcomes on teachers' predicted VA, varying the covariates used in residualizing the outcomes within 
teachers and controlling only for the subject to which the VA score pertains (math or reading) in the 
second stage regression. Columns 5 and 6 add classroom and teacher means of the VA covariates to 
the second stage regression. Standard errors are clustered at the school‐cohort level. Column 1 shows 
the number of student observations used in the Column‐2 regressions.

Teacher‐year level regressions



Table 6. Quasi‐experimental estimates of effects on long‐run outcomes

No controls
Prior score 
control

(1) (2) (3)

College at age 20 (%) 33,167 0.86
(0.23)

College quality at age 20 ($) 33,167 197.6
(60.3)

Graduate HS (%) 50,508 0.38 0.26
(0.17) (0.17)

Plan college (%) 36,508 0.61 0.41
(0.24) (0.24)

Plan 4‐year college (%) 36,508 0.45 0.09
(0.27) (0.26)

GPA (4 pt scale) 21,836 0.014 0.004
(0.007) (0.006)

Class rank 21,836 0.42 0.16
(0.21) (0.19)

Number of school x 
grade x subject x year 

cells

Quasi‐experimental estimates

Notes: Each entry in columns 2‐3 represents a separate regression of the year‐over‐year 
change in school‐grade‐subject‐year mean outcomes (indicated on left) on the change in 
mean predicted teacher VA. Each regression includes year fixed effects and is clustered 
at the school‐cohort level. Column 3 also controls for the change in mean prior‐year 
scores in the cohort. Following CFR‐II, predicted VA is set to zero for teachers with 
missing predicted VA and for those who would otherwise be in the top 1% of the 
predicted VA distribution.

Panel A: CFR‐II

Panel B: North Carolina



Appendix(Figure(1(
Reproduction(of(CFR4I,(Figure(1A(

!

!
!

Notes:!See!notes!to!CFR-I,!Figure!1.!
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Appendix Table A1. Reproduction of CFR‐I, Table 1 (Panel A only)
Summary statistics for sample used to estimate value‐added model

Mean SD N Mean SD N
(1) (2) (3) (4) (5) (6)

Class size (not student weighted) 27.3 5.6 391,487 22.2 5.0 357,036
No. of subject‐years per student 5.6 3.0 1,367,051 4.5 1.7 1,607,198
Test score (SD) 0.2 0.9 7,639,288 0.0 1.0 7,215,581
Female 50.8% 7,639,288 49.7% 7,215,581
Age (years) 11.4 1.5 7,639,288 10.5 0.9 7,213,590
Free lunch elig. 79.6% 5,021,163 44.9% 3,926,246
Minority (Black/Hispanic) 71.6% 7,639,288 34.2% 7,215,581
English language learner 4.8% 7,639,288 8.5% 5,996,113
Special education 1.9% 7,639,288 2.3% 5,478,335
Repeating grade 1.7% 7,639,288 1.4% 7,215,581
Matched to parents in tax data 87.7% 7,639,288

CFR‐I, Table 1 North Carolina sample

Notes: See notes to CFR‐I, Table 1. In New York, free lunch eligibility is available only for 1999‐2009. In 
North Carolina, it is available only for 1999‐2006, and English language learner and special education  
information are available only 1997‐2008. 



Appendix Table A2. Reproduction of CFR (2014a), Table 2
Teacher Value‐Added Model Parameter Estimates

Elem. School Elem. School Elem. School Elem. School
English Math English Math
(1) (2) (3) (4)

Lag 1 0.013 0.022 0.012 0.032
(0.0003) (0.0003) (0.0002) (0.0002)
[0.305] [0.434] [0.359] [0.551]

Lag 2 0.011 0.019 0.011 0.028
(0.0003) (0.0003) (0.0002) (0.0003)
[0.267] [0.382] [0.317] [0.485]

Lag 3 0.009 0.017 0.009 0.026
(0.0003) (0.0004) (0.0002) (0.0003)
[0.223] [0.334] [0.281] [0.442]

Lag 4 0.008 0.015 0.008 0.023
(0.0004) (0.0004) (0.0002) (0.0004)
[0.190] [0.303] [0.250] [0.407]

Lag 5 0.008 0.014 0.008 0.022
(0.0004) (0.0005) (0.0002) (0.0004)
[0.187] [0.281] [0.239] [0.384]

Lag 6 0.007 0.013 0.007 0.021
(0.0004) (0.0006) (0.0003) (0.0005)
[0.163] [0.265] [0.218] [0.360]

Lag 7 0.006 0.013 0.007 0.019
(0.0005) (0.0006) (0.0003) (0.0005)
[0.147] [0.254] [0.202] [0.333]

Lag 8 0.006 0.012 0.006 0.018
(0.0006) (0.0007) (0.0003) (0.0006)
[0.147] [0.241] [0.201] [0.310]

Lag 9 0.007 0.013 0.006 0.017
(0.0007) (0.0008) (0.0003) (0.0007)
[0.165] [0.248] [0.184] [0.299]

Lag 10 0.007 0.012 0.006 0.017
(0.0008) (0.0010) (0.0004) (0.0008)
[0.153] [0.224] [0.174] [0.285]

Total SD 0.537 0.517 0.561 0.544
Individual Level SD 0.506 0.473 0.542 0.495
Class+Teacher Level SD 0.117 0.166 0.144 0.225
Estimates of Teacher SD

Lower Bound Based on Lag 1 0.113 0.149 0.110 0.180
Quadratic Estimate 0.124 0.163 0.118 0.192

CFR North Carolina sample

Panel A: Autocovariance and Autocorrelation Vectors

Panel B: Within‐Year Variance Components

Notes: See notes to CFR (2014a), Table 2.  In Panel A, each entry includes the autocovariance, the 
standard error of that covariance (in parentheses), and the autocorrelation (in brackets) of average test 
score residuals across years, within teachers.



Appendix Table A3. Reproduction of CFR (2014a), Table 3
Estimates of Forecast Bias Using Parent Characteristics and Lagged Scores

Dep. Var.:

Score in Year 
t

Pred. Score 
using Parent 

Chars.

Score in 
Year t

Pred. Score 
using Year t‐2 

Score
(1) (2) (3) (4)

Teacher VA 0.998 0.002 0.996 0.022
(0.0057) (0.0003) (0.0057) (0.0019)

Parent Chars. Controls X
Observations 6,942,979 6,942,979 6,942,979 5,096,518

Teacher VA 1.021 0.009 0.022
(0.004) (0.001) (0.002)

Parent Chars. Controls
Observations 5,142,680 3,584,736 3,014,172

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 3; replication follows their methods. Dependent 
variables are residualized against the covariates in the VA model, at the individual level, 
before being regressed on on the teacher's leave‐one‐out predicted VA, controlling for 
subject. In Column 2, the second stage regression is estimated on classroom‐subject‐
level aggregates; reported observation counts correspond to the number of student‐
year‐subject‐level observations represented in these aggregates. Standard errors are 
clustered at the school‐cohort level.



Appendix Table A4. Reproduction of CFR (2014a), Table 4
Quasi‐Experimental Estimates of Forecast Bias

Dependent Variable: Δ Score Δ Score Δ Score Δ 
Predicted 
Score

Δ Other 
Subj. 
Score

Δ Other 
Subj. 
Score

(1) (2) (3) (4) (5) (6)

Change in mean teacher predicted VA 0.974 0.957 0.950 0.004 0.038 0.237
 across cohorts (0.033) (0.034) (0.023) (0.005) (0.083) (0.028)

Year Fixed Effects X X X
School x Year Fixed Effects X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X
Other‐Subject Change in Mean Teacher VA X X

Grades 4 to 8 4 to 8 4 to 8 4 to 8
Middle 
Sch.

Elem. 
Sch.

No. of School x Grade x Subject x Year Cells 59,770 59,770 46,577 59,323 13,087 45,646

Change in mean teacher predicted VA 1.097 1.030 0.994 0.008 0.202
 across cohorts (0.022) (0.021) (0.017) (0.011) (0.016)

Year Fixed Effects X X
School x Year Fixed Effects X X X
Lagged Score Controls X
Lead and Lag Changes in Teacher VA X
Other‐Subject Change in Mean Teacher VA X
Grades 3 to 5 3 to 5 3 to 5 3 to 5 3 to 5
No. of School x Grade x Subject x Year Cells 79,466 79,466 58,385 54,663 76,548

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 4. Panel B replicates CFR's estimates using the North Carolina 
sample. 



Appendix Table A5. Reproduction of CFR (2014a), Table 5
Quasi‐Experimental Estimates of Forecast Bias: Robustness Checks

Specification: Teacher 
Exit Only

Full 
Sample

<25% 
Imputed VA

0%    Imputed 
VA

Dependent Variable: Δ Score Δ Score Δ Score Δ Score
(1) (2) (3) (4)

Change in mean teacher predicted VA 1.045 0.877 0.952 0.990
 across cohorts (0.107) (0.026) (0.032) (0.045)

Year Fixed Effects X X X X
Number of School x Grade x Subject x Year Cells 59,770 62,209 38,958 17,859
Pct. of Observations with Non‐Imputed VA 100.0 83.6 93.8 100.0

Change in mean teacher predicted VA 1.174 0.936 1.100 1.081
 across cohorts (0.040) (0.022) (0.035) (0.043)

Year Fixed Effects X X X X
Number of School x Grade x Subject x Year Cells 79,466 91,221 34,495 23,445
Pct. of Observations with Non‐Imputed VA 100.0 72.6 94.4 100.0

Panel A: CFR (2014a)

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Table 5. Panel B replicates CFR's estimates using the North Carolina 
sample. 



Appendix Table A6. Reproduction of CFR (2014a), Table 6
Comparisons of Forecast Bias Across Value‐Added Models

Correlation 
with 

baseline VA 
estimates

Quasi‐
experimental 
estimate of 
bias (%)

Correlation 
with 

baseline VA 
estimates

Quasi‐
experimental 
estimate of 
bias (%)

(1) (2) (3) (4)
1. Baseline 1.000 2.58 1.000 ‐9.69

(3.34) (2.19)
2. Baseline, no teacher FE 0.979 2.23 0.981 ‐6.07

(3.50) (2.22)
3. Baseline, with teacher experience 0.989 6.66

(3.28)
4. Prior test scores 0.962 3.82 0.976 ‐9.13

(3.30) (2.18)
5. Student's lagged scores in both subjects 0.868 4.83 0.955 ‐4.88

(3.29) (2.17)
6. Student's lagged score in same subj. only 0.787 10.25 0.923 ‐3.09

(3.17) (2.13)
7. Non‐score controls 0.662 45.39 0.683 31.00

(2.26) (1.56)
8. No controls 0.409 65.58 0.522 46.41

(3.73) (1.32)

CFR‐I North Carolina

Notes: See notes to CFR‐I, Table 6. CFR (2014a) do not provide code for the row 3 specification. 
Negative bias share coefficients in column 4 reflect estimated forecast coefficients above 1.



Appendix Table A7. Replication of CFR (2014a), Appendix Table 2
Differences in Teacher Quality Across Students and Schools

(1) (2) (3) (4) (5) (6) (7)

Lagged test score 0.0122 0.0123
(0.0006) (0.0006)

Special educ. student ‐0.003
(0.001)

Parent income ($10,000s) 0.00084 0.00001
(0.00013) (0.00011)

Minority (black/hispanic) student ‐0.001
(0.001)

School mean parent income ($10,000s) 0.0016
(0.0007)

School fraction minority 0.003
(0.003)

N 6,942,979 6,942,979 6,094,498 6,094,498 6,942,979 6,942,979 6,942,979

Lagged test score 0.0077
(0.0004)

Special ed 0.0055
(0.0006)

Minority (black/hispanic) student ‐0.0028
(0.0012)

School fraction minority 0.0054
(0.0042)

N 5,142,680 5,142,680 5,142,680 5,142,680

Dependent variable: Teacher value‐added

Panel A: CFR (2014a), Appendix Table 2

Panel B: North Carolina sample

Notes: See notes to CFR (2014a), Appendix Table 2. Panel B reports coefficients from applying CFR's 
code to the North Carolina sample. CFR multiply their reported coefficients by 1.56 to offset the 
average shrinkage of the dependent variable. The corresponding factor in the North Carolina sample 
(using CFR‐I's calculation) is 1.36, and coefficients in Panel B are multiplied by that.



Appendix Table B1. Assessing potential mechanical contributions to the placebo test failure

Dependent variable

No 
controls

With control 
for Δ prior 
year score

No 
controls

With control 
for Δ prior 
year score

(1) (2) (3) (4) (5) (6)
1 0.14 1.03 0.93 0.09 0.90 0.86

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2 0.14 1.03 0.93 0.09 0.90 0.86

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
3 0.08 1.00 0.95 0.03 0.87 0.87

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
4 0.12 1.06 0.97 0.06 0.91 0.89

(0.04) (0.04) (0.02) (0.04) (0.04) (0.03)
5 0.05 1.03 0.99 ‐0.02 0.87 0.89

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
6 0.17 1.03 0.92 0.12 0.91 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
7 0.12 1.01 0.93 0.07 0.88 0.85

(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
8 0.16 1.02 0.91 0.13 0.90 0.84

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
9 0.15 1.02 0.91 0.13 0.89 0.83

(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)
10 0.14 0.99 0.89 0.12 0.88 0.82

(0.03) (0.04) (0.02) (0.04) (0.04) (0.03)

Leave‐three‐out, IV

Including all classroomsExcluding classrooms without VA 
predictions

Notes: Specifications in Row 1 correspond to Table 2, Column 1 (Cols. 1 and 4); Table 3, Column 1 
(Cols. 2 and 5); and Table 3, Column 2 (Cols. 3 and 6). In each case, Columns 1‐3 correspond to the 
Panel A specification in the earlier table, and Columns 4‐6 to the Panel B specification. Successive rows 
modify the specification. In Rows 2‐9, standard errors are clustered at the school level. In Row 3, the 
change in mean predicted teacher VA in the school‐grade‐subject‐year cell is instrumented with a 
variable constructed similarly but with predicted VA set to zero for teachers who have ever previously 
taught the same cohorts. Row 4 presents OLS estimates with school‐year‐subject fixed effects, while 
row 5 reports IV estimates of the same specification using the non‐following teacher instrument. In 
Rows 6‐9, teacher VA predictions are constructed using only data from before t‐2 (rows 6 and 7), t‐3 
(row 8), or t‐4 (row 9).  In Row 10, only data from after t is used. Row 7 applies the IV specification 
from Row 3 to the model from row 6, using leave‐3‐out VA predictions for non‐follower teachers.  
Italicized coefficients are significantly different from the null hypothesis (zero in Columns 1 and 4; one 
in Columns 2, 3, 5, and 6).

Δ End‐of‐Year Score

Baseline

Cluster on school

Using leave‐three‐out 
teacher VA predictions

IV setting VA of following 
teachers to zero
School‐year‐subject FEs

Using leave‐four‐out 
teacher VA predictions
Using leave‐five‐out 
teacher VA predictions
Using leave‐past‐out 
teacher VA predictions

Δ End‐of‐Year ScoreΔ Prior 
Year 
Score

Δ Prior 
Year 
Score

School‐year‐subject FEs, IV



Appendix	Table	B2.	Assessing	sensitivity	of	results	to	the	imputation	model

Grand	
mean

School	
mean

Missing	
mean

Missing	mean	
at	school

(1) (2) (3) (4) (5)

Change	in	mean	teacher 1.030 0.904 0.915 0.933 0.911
predicted	VA (0.021) (0.022) (0.022) (0.022) (0.021)

Change	in	mean	teacher 0.144 0.092 0.134 0.084 0.128
predicted	VA (0.021) (0.022) (0.023) (0.023) (0.022)

Change	in	mean	teacher 0.933 0.860 0.850 0.892 0.847
predicted	VA (0.015) (0.017) (0.017) (0.017) (0.017)

Change	in	mean	student 0.675 0.536 0.535 0.536 0.535
prior	year	score (0.004) (0.009) (0.009) (0.009) (0.009)

Notes:	Specifications	in	column	1,	panels	A-C	are	identical	to	those	in	Table	1,	Column	2;	
Table	2,	Column	1;	and	Table	3,	Column	2,	respectively.	Successive	columns	include	all	
classrooms	in	the	dependent	and	independent	variables,	varying	the	VA	prediction	
assigned	to	teachers	who	are	excluded	in	column	1.	In	column	2,	these	teachers	are	
assigned	the	grand	mean	of	zero.	In	Column	3,	the	prediction	is	based	on	the	shrunken	
leave-two-out	mean	at	the	same	school.	In	Column	4,	it	uses	the	shrunken	leave-two-out	
mean	among	all	teachers	with	missing	VA	predictions.	In	column	5,	it	uses	the	shrunken	
leave-two-out	mean	among	all	teachers	at	the	school	with	missing	VA	predictions.	All	
specifications	include	school-year	fixed	effects.	N=79,466	school-grade-subject-year	cells	
in	Column	1;	91,221	in	Columns	2-5	in	Panel	A;	and	90,701	in	Columns	2-5,	Panels	B-C.

Including	all	classrooms,	assigning	to	teachers	
with	missing	VA	predictions:

Excluding	
classrooms	
missing	

teacher	VA	
predictions

Panel	A:	Quasi-experimental	models	without	controls

Panel	B:	Models	for	change	in	prior-year	scores

Panel	C:	Models	for	change	in	end-of-year	scores,	with	
controls	for	change	in	prior-year	scores



Appendix Table B3. Robustness of CFR‐I, Table 5's robustness results
Quasi‐Experimental Estimates of Forecast Bias: Robustness Checks

(1) (2) (3) (4) (5) (6) (7) (8)

Change in mean teacher 1.174 1.080 0.936 0.904 1.100 0.965 1.081 0.918
predicted VA (0.040) (0.044) (0.022) (0.022) (0.035) (0.040) (0.043) (0.051)

Year fixed effects X X X X
School‐year fixed effects X X X X
Number of School x Grade x 
Subject x Year Cells 79,466 79,330 91,221 91,221 34,495 34,495 23,445 23,445

Change in mean teacher 0.296 0.226 0.175 0.093 0.199 0.064 0.177 0.033
predicted VA (0.039) (0.043) (0.023) (0.022) (0.033) (0.038) (0.040) (0.047)

Change in mean teacher 0.981 0.928 0.853 0.859 0.978 0.926 0.973 0.899
predicted VA (0.030) (0.029) (0.019) (0.017) (0.028) (0.031) (0.035) (0.041)

Change in mean student 0.650 0.675 0.497 0.537 0.611 0.608 0.610 0.583
prior year score (0.004) (0.005) (0.009) (0.009) (0.006) (0.007) (0.007) (0.009)

Panel B: Models for change in prior‐year scores

Panel C: Models for change in end‐of‐year scores, with controls for 
change in prior‐year scores

Notes: See notes to CFR (2014a), Table 5. Columns 1, 3, 5, and 7 in Panel A reproduce results from that 
table. Even‐numbered columns add school‐year fixed effects. Panel B changes the dependent variable, 
while Panel C adds a control for the change in the prior‐year score.

Teacher Exit 
Only

Full Sample <25% Imputed VA 0% Imputed VA

Panel A: Quasi‐experimental models without controls



Appendix Table B4. Revisiting CFR (2015)'s simulations of missing VA and imputations

Ideal Data (No 
Missing Values)

Exclude Obs with 
Missing Data

Impute 0s for 
Missing Data

(1) (2) (3)

Change in Mean VA across Cohorts 0.989 0.972
(dropping missing values) (0.0248) (0.0243)

Change in Mean VA across Cohorts 0.879
(assigning zero if VA missing) (0.0264)

Pct. Of Obs With Non‐Imputed VA 100.0 100.0 80.0
Pct. Of Obs Excluded 0.0 20.0 0.0

Change in Mean VA across Cohorts 0.992 0.976
(dropping missing values) (0.0224) (0.0226)

Change in Mean VA across Cohorts 0.933
(assigning zero if VA missing) (0.0245)

Change in Mean Predicted VA across Cohorts 0.863 0.912
(dropping missing values) (0.0273) (0.0273)

Change in Mean Predicted VA across Cohorts 0.825
(using prediction of 0 if no other data) (0.0295)

Change in Mean Predicted VA across Cohorts 0.928 0.948
(dropping missing values) (0.0255) (0.0260)

Change in Mean Predicted VA across Cohorts 0.910
(using prediction of 0 if no other data) (0.0280)

Change in Mean Predicted VA across Cohorts 0.992 0.987
(dropping missing values) (0.0235) (0.0246)

Change in Mean Predicted VA across Cohorts 0.999
(using prediction of 0 if no other data) (0.0263)

Notes: See CFR (2015a), Table 2, and accompanying code in Appendix C. Panels B‐E modify this code to 
change the correlation between VA scores of teachers at the same school (Panels B, D, and E) and to 
incorporate prediction of VA scores based on incomplete data as in CFR‐I (Panels C, D, and E).

Dep. Var.: Change in Mean Score Across Cohorts

Panel B: ICC = 0.2, VA known w/ certainty

Panel C: ICC = 0.35, VA predicted based on other years

Panel D: ICC = 0.2, VA predicted based on other years

Panel E: ICC = 0, VA predicted based on other years

Panel A: CFR (2015) Simulation: ICC = 0.35, VA known 
w/ certainty


