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Abstract 

The methods used in most SAT validity studies cannot be justified by any sample selection 

assumptions and are uninformative about the source of the SAT’s predictive power.  A new 

omitted variables estimator is proposed; plausibly consistent estimates of the SAT’s 

contribution to predictions of University of California freshman grade point averages are 

about 20% smaller than the usual methods imply.  Moreover, much of the SAT’s predictive 

power is found to derive from its correlation with high school demographic characteristics:  

The orthogonal portion of SAT scores is notably less predictive of future performance than is 

the unadjusted score. 
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1. Introduction 

Several prominent colleges have recently de-emphasized the SAT entrance exam in 

admissions.  The University of California (UC), perhaps in reaction to a mid-1990s prohibition 

on race-based affirmative action (U.S. Commission on Civil Rights, 2000), has been 

particularly active.  In 2001, it implemented the �Four Percent Plan,� whereby students at the 

top ranks of their high school classes are guaranteed admission regardless of SAT scores, and 

in 2002 it adopted a �comprehensive review� plan that will inevitably reduce the importance 

of SAT scores in campus admissions.  Responding to UC President Richard Atkinson�s (2001) 

proposal to eliminate the UC�s SAT requirement, the College Board recently announced 

substantial changes to the SAT exam. 

Critics argue that SAT scores measure academic preparedness and that any dilution of 

the SAT�s role will lead to a less qualified entering class (Barro, 2001; McWhorter, 2001).  In 

this view, the acknowledged correlation between SAT scores and student socioeconomic 

status is an unfortunate side effect of educational inequality: Students from disadvantaged 

backgrounds are simply not as well prepared to succeed in college, and the SAT should be 

credited, not blamed, for measuring this shortfall (Camara, 2001).   

Granting that collegiate academic success is the appropriate maximand of the 

admissions process, the debate hinges on an empirical question: How much information does 

the SAT provide about a student�s future performance in college?  To evaluate the UC�s new 

Four Percent Plan, for example, one wants to know whether the high GPA, low SAT students 

it admits will perform better or worse than the lower GPA, higher SAT students they displace. 

A long �validity� literature attempts to answer this question by estimation of 

prediction models for collegiate outcomes like freshman grade point average, FGPA (e.g., 

Bridgeman et al., 2000; Camara and Echternacht, 2000; Stricker, 1991; Willingham et al., 

1990).  Unfortunately, the validity literature is not especially informative about the effects of 
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changes in admissions policies.  Two methodological shortcomings stand out.  First, 

prediction models are estimated on highly selected samples, with theoretically indeterminate 

effects on the estimated SAT contribution.  It is demonstrated below that no selection 

assumptions can justify the approach typically taken.  Second, validity studies typically fail to 

take account of other variables that predict college performance, and are therefore 

uninformative about the source of the SAT�s predictive power.  The usual methods would 

assign predictive power to any candidate variable that happened to correlate with students� 

demographic and socioeconomic characteristics, and thus necessarily overstate the SAT�s 

importance.1   

This paper attempts to correct these shortcomings in estimating the SAT�s validity for 

predictions of FGPA at the University of California.  I take advantage of a helpful feature of 

the UC�s admissions process:  Many applicants are guaranteed admission to the UC on the 

basis of SAT scores and high school grades alone.  An analysis sample composed of these 

students is free of an important source of sample selection that often biases prediction model 

coefficients.  Under the (admittedly strong) assumption that individual campus admissions and 

student matriculation decisions are ignorable, OLS prediction coefficients are consistent as 

long as both the SAT score and the high school grade point average are included as 

independent variables.  A new omitted variables estimator is used to extend these results to 

the restricted models needed for conventional validity measures.  The resulting estimate of the 

SAT�s predictive contribution is about 20% lower than that found by traditional methods.  

Several alternative specifications designed to address additional forms of sample selection 

indicate that this may slightly overstate the true, selection-free contribution.   

I also investigate the sensitivity of the SAT�s apparent predictive power to the 

inclusion of student background characteristics as FGPA predictors.  Variables describing the 

demographic composition of students� high schools are found to be strong predictors of both 

SAT scores and FGPAs.  Moreover, the latter are substantially more strongly related to the 

                                                 
1 Researchers often estimate prediction models within racial groups (Young, 2001).  Single-group validities, 

however, do not permit evaluation of policies that operate both across- and within-groups.  Willingham and 
Breland (1982) and Willingham (1985) use an approach similar to that taken here, but do not focus on 
implications for the SAT�s role.  Bowen and Bok (1998) and Crouse and Trusheim (1988) take other 
approaches.   
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portion of students� SAT scores that can be predicted from background characteristics than to 

the part that cannot.  The SAT apparently serves in part as a proxy for omitted background 

variables in sparse models, which therefore overstate its incremental informational content.  

My preferred estimate of the SAT�s predictive contribution in the UC sample is 60 percent 

lower than would be indicated by traditional methods.  The richer models do not extend 

directly to admissions policy, as they imply a politically infeasible�and possibly undesirable�

admissions rule.  Nevertheless, the results here raise questions about whether FGPA-

maximizing admissions policies can be seen as meritocratic.   

In order to focus on the questions at hand, several topics emphasized in the validity 

literature are neglected.  Most importantly, I assume an underlying single index of student 

preparedness, an increment to which produces the same change in expected FGPA at all 

campuses and in all majors.  Most validity studies make weaker assumptions, permitting 

prediction coefficients to vary without restriction at different colleges (Breland, 1979; Young, 

1993 reviews other approaches).  Doing so makes sample selection problems intractable.  It is 

also inconsistent with admissions practice:  The UC uses a single index of SAT scores and 

high school grades for determining eligibility to any its eight campuses.2  As the UC�s 

systemwide eligibility rules are the most relevant to many proposed policies, I maintain the 

single-index assumption and estimates prediction models for a pooled sample of UC students. 

2. The Validity Model 

The admissions office�s (stylized) problem is to identify a subset of the applicant pool 

most likely to be academically successful.  The office�s assessment of student i may be written 

as 

 [ ] ,, γβα iiiii SXSXyE ++=∗  (1) 

where Si is the student�s SAT score, Xi is a vector of other admissions variables, and yi
* is a 

measure of the student�s preparedness for college.3  Given observations on a realization of y*, 

y, for a random sample of students, best linear predictor coefficients α, β, and γ can be 
                                                 
2 Hernandez (1997) reports that the Ivy League colleges also share a common admissions index. 
3 I assume throughout that the conditional expectation is linear and additive.  A variety of semiparametric 

models, not reported here, offer no evidence against this assumption, and indeed indicate a remarkably linear 
relationship in the scaled SAT score.  
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estimated by OLS regression of y on X and S.  Predictive accuracy is measured by the 

regression goodness-of-fit.   

In SAT validity studies, X typically consists only of a single variable, the high school 

grade point average (HSGPA) or class rank, while y is the freshman grade point average 

(FGPA).  Studies generally measure the SAT�s importance by two statistics: the fit of a 

restricted model that forces 0=β  and the increment to fit conferred by the unrestricted 

model (1) over another model that forces 0=γ .  When goodness-of-fit is measured as 

2RR = �these statistics are known as the SAT�s raw validity and incremental validity, 

respectively. 

2.1. Restriction of range corrections 

The population for whom outcomes are to be predicted is the group of potential 

applicants, while FGPA is observed only for students who have previously matriculated, likely 

not a representative group.  Sample selection problems are compounded by the focus on 

goodness-of-fit statistics rather than regression coefficients, as the former may be inconsistent 

even when the latter are estimated without bias.  �Restriction of range� corrections are used to 

resolve this problem (Camara and Echternacht, 2000; Willingham et al., 1990).  These 

corrections are described here in the context of estimating the population explained share of 

variance.4  It is then shown that no assumptions about the sample selection process can justify 

the typical use of range corrections. 

Suppose that the data generating process for y is linear, additive, and homoskedastic: 

 iiii SXy εγβα +++= , (2) 

where iε  is independent of (Xi, Si) with zero mean and constant variance 2σ .  The theoretical 

explained share of variance is  
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where Σ  is the variance-covariance matrix for (X, S). 

                                                 
4 Empirical results below also present traditional validities.  As we are concerned with consistency rather than 

finite-sample unbiasedness, the extension from R2 to R is trivial.  
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Now suppose that (2) and (3) are estimated on a sample selected purely on the basis of 

X and S.  With this selection assumption, the OLS estimates β̂ , γ̂ , and 2σ̂  are consistent.  

However, the within-sample Σ̂  is not consistent for its population value.  Corrections for 

�restriction of range� recover an estimate of R2 by using a consistent estimate of Σ , drawn 

from an auxiliary, unselected data source, in place of the within-sample variance-covariance in 

(3).  

2.2. The logical inconsistency of range corrections 

The range corrected R2 is consistent for the population explained share of variance as 

long as OLS coefficients and residual variance are themselves consistent.  As noted, one 

condition that assures this is selection-on-observables:  If sample selection (via admissions and 

matriculation decisions) is independent of iε , consistency is guaranteed.  Even in this unlikely 

situation, however, usual practice cannot be justified.  The typical study also estimates 

restricted versions of (2) in which either β  or γ  is constrained to be zero.  Altering the 

notation slightly, three regression models must be estimated: 
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The last of these is required for SAT�s raw validity, considered in the absence of other 

variables; the first and second are needed to estimate SAT�s incremental validity.  Letting jR
~  

denote the range-corrected R from model j, both CR
~  and BA R

~
R
~ −≡∆  are reported. 

Selection on (X, S) is not sufficient for consistency of OLS for (4B) and (4C).  

Estimation of (4B) requires that sample selection be on X alone; otherwise, selection on S 

biases the within-sample regression of S on X.  The restricted model relies on this 

regression�rewrite (4B) as [ ]=XyE [ ][ ] [ ] 111, γβα XSEXXSXyEE ++= �and is 

inconsistent when S enters the selection rule.  A similar argument shows that estimation of 

(4C) requires that X be irrelevant to selection.   

Taken together, OLS coefficients and range corrected fit statistics are consistent for 

(4B) and (4C) only when sample selection is independent of (X, S, ε ).  In this case, however, 

there is no restriction of range and OLS is consistent for all desired statistics. 
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Section 4 describes a new omitted variables approach that takes advantage of the 

population Σ  used for range corrections to permit consistent estimation of (4B) and (4C) 

from the unrestricted model (4A).  Even this requires an unusual sample selected only on (X, 

S).  Most admissions rules use indicators of student preparedness�recommendation letters, 

extracurricular activities, essays�that cannot be controlled for in X, making the selection-on-

observables assumption untenable.  A crucial part of the University of California admissions 

process, however, considers only observed variables.  The next section describes the 

construction of an analysis sample in which the assumption is plausible, at least for one 

important selection margin.   

3. Data 

I use an unusually large and rich data set extracted from University of California 

administrative records.  The data contain observations on all 22,526 California residents 

(18,587 with complete records) from the 1993 high school class who applied to, were admitted 

by, and enrolled as freshmen at any of the eight UC campuses.5  This cohort predates the 

recent changes in UC admissions policies. 

The data, while rich, impose several limitations on the analysis.  Most importantly, the 

only test score available is the SAT score composite, the sum of separate math and verbal 

scores.6  All models estimated here thus impose identical prediction coefficients for the two 

SAT subtests.  Moreover, I cannot test whether the results generalize to the subject-specific 

SAT II exams, though Geiser and Studley�s (2001) analysis of similar data suggests that they 

would not. 

The criterion used is the UC-wide FGPA.7  I assume that a change in preparedness 

produces the same increment to FGPA at all campuses and in all courses.  It may induce a 

change in campus or course selection, which I allow to affect FGPA through campus and 

                                                 
5 Observations from one of the campuses, Santa Cruz, are excluded from all analyses: Grades are optional at 

UCSC and are infrequently assigned.  A ninth campus, San Francisco, enrolls only graduate students.  
6 Since 1994, the SAT is called the SAT I, and is marked on a �recentered� scale.  This paper uses �SAT� and 

�SAT I� interchangeably, with all scores on the pre-1994 scale.  
7 An earlier version of this paper (Rothstein, 2002) also estimated models for two longer-term measures.  

Prediction models for the overall college GPA resemble those for the freshman year.  The SAT score seems to 
have less predictive power, however, for graduation rates than for grade-based measures.  Wilson (1983) 
reviews similar results.  
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freshman major fixed effects.  This is in the spirit of a matching procedure used by Goldman 

and Widawski (1976) to correct the FGPA for departmental differences in grading standards, 

though the lack of course-level enrollment information prevents implementation of their full 

procedure.  Campus and major effects are interpreted as criterion adjustments, not as 

explained variance, so are excluded in calculations of goodness-of-fit statistics.  In keeping 

with this interpretation, they are constrained to remain unchanged in estimates of the 

restricted models (4B) and (4C).  Of course, both campus and major are potentially 

endogenous.  Several specification checks presented in Section 5 suggest that endogeneity of 

campus and major does not seriously bias prediction coefficients from the pooled sample.    

Two auxiliary data sources are used in concert with the UC database.  First, data from 

the College Board, with observations on all California SAT-takers from the 1994-1998 high 

school cohorts, are used to estimate Σ , the population variance-covariance matrix of SAT 

scores and high school GPAs.  Second, school-level demographic characteristics are drawn 

from the California Department of Education�s Academic Performance Index (API) 

database.8  The API data cover only public schools, and analyses in Section 6 are therefore 

restricted to graduates from 671 public high schools (81 percent of the students in the UC 

database).  Range corrections in that section extend results only to the population of public 

school SAT-takers. 

<Insert Table 1 about here> 

Table 1 reports summary statistics for the population of California SAT-takers, for the 

UC sample, and for a subsample consisting of �UC eligible students.�   

3.1. UC admissions processes and eligible subsample construction 

The UC system�s mandate is to admit the top 12.5 percent of California high school 

graduates each year.  Admissions decisions are made in several stages.  First, a central office 

determines whether each applicant is eligible to the UC (that is, whether she is in the top 12.5 

percent).  All eligible students are guaranteed admission to at least one campus.  Second, each 

of the campuses to which the student applied decides whether to admit her.9  Campus 

                                                 
8 The API data were first collected in 1999, and may measure 1993 school characteristics with error. 
9 UC eligibility policies�the Four Percent Plan, for example, but not affirmative action, which was only ever 

practiced at the individual campus level�are thus about how to define the �top 12.5%.� 
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admissions give preferences to eligible students, and no campus may make more than six 

percent of its admissions offers to ineligible applicants.  Because campus admissions are not 

centrally coordinated, some eligible applicants are admitted to several campuses while others 

are rejected from all the campuses to which they have applied.  In a third stage, the latter 

students are offered admission at one of the less selective campuses, frequently Riverside. 

The central eligibility determination, unlike campus admissions decisions, is based on 

published rules that in 1993 consisted primarily of a deterministic function of the HSGPA and 

composite SAT score (UC Office of the President, 1993).  As a result, eligibility can be 

simulated for each student in the UC database.  A subsample is constructed consisting of the 

17,346 students (14,102 from public schools with API data) who are judged to have been UC 

eligible. 10   

For students in the eligible subsample, admission was guaranteed, and sample selection 

came only from decisions to apply and to accept an admissions offer that may not have been 

at the preferred campus.11  If these decisions may be assumed uninformative about 

unobserved ability� iε  in (2)�the subsample is selected on observables and permits 

consistent OLS estimation of (4A).  Moreover, even if student enrollment decisions are 

informative about ability, the subsample is arguably representative (again, conditional on X 

and S) of the population of interest to admissions offices, who presumably care only to 

accurately predict performance for students who might choose to enroll if admitted.  In the 

next section, I present validity estimates, first using conventional, inconsistent methods and 

then taking advantage of the UC eligibility rule to obtain estimates that are consistent as long 

as matriculation, campus, and major choices are ignorable.  Section 5 examines this 

assumption, presenting evidence that student self-selection into the UC and into particular 

campuses does not substantially bias pooled-model coefficients. 

                                                 
10 These are 93.3% of the UC sample; slightly more than 6% of the students in the sample are ineligible.  This 

overrepresentation relative to the above-cited 6% limit likely reflects different matriculation rates�yields�
among eligible and ineligible admitted students. 

11 Leonard and Jiang (1999) note the utility of the same institutional feature for validity studies. 
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4. Validity Estimates: Sparse Model 

Table 2 presents several estimates of the basic validity model described in Section 2, 

using HSGPA as the only X variable.  The first column presents OLS estimates from the full 

UC sample.  Panels A through C report coefficients and range-corrected fit statistics from 

models (4A) through (4C), respectively.  The final rows report the SAT increment to 

goodness-of-fit, the difference between fit statistics in Panels A and B.  The usual validity 

methods would thus report the SAT�s raw validity as 0.490 and its incremental validity as 

0.055. 

<Insert Table 2 about here> 

The regression coefficients in Column A are potentially biased by endogenous sample 

selection.  Column B repeats the models using only the UC-eligible subsample.  The eligibility 

determination considers only observables, so coefficients from the unrestricted model in Panel 

A should not be biased by eligibility-induced sample selection.12  The sample of eligible students 

produces a 13% increase in the HSGPA coefficient, with a negligible effect on the SAT 

coefficient.  (The differential effect probably reflects the greater importance of HSGPA in the 

1993 eligibility determination: Table 1 reveals that ineligible students have low HSGPAs but 

SAT scores comparable to those of eligible students.) 

Panels B and C of Column B present OLS estimates of the restricted models from the 

eligible subsample.  These estimates are inconsistent, as observed independent variables in 

(4A) act as unobservables in (4B) and (4C).  Recall the omitted variables formulation of (4B): 

 [ ] [ ][ ] [ ] 111, γβα XSEXXSXyEEXyE ++== . (5) 

Because eligibility rules allow high SAT scores to compensate for low HSGPAs (in a narrow 

range), [ ]XSE  is likely to be substantially different in the sample than in the population.  

Figure 1 displays kernel estimates of this conditional expectation in the SAT-taker population, 

in the full UC sample, and in the eligible subsample.  The uptick at the leftmost extreme of the 

subsample graph reflects the SAT-HSGPA tradeoff inherent in the eligibility rule.  The figure 

                                                 
12 In the presence of other forms of sample selection, these coefficients may yet be biased.  In Section 5, I offer 

evidence that endogenous matriculation and campus selection do not introduce substantial bias. 
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legend reports linear regressions of S on X; these differ across samples not only in their 

vertical positions�which would be absorbed by the intercept in (5)�but also in their slopes.   

<Insert Figure 1 about here> 

The linear models reported in Figure 1 are sufficient statistics for calculation of the 

restricted model (4B).  The coefficient of a regression of S on X is ( ) ( )XSSX varvarρ , where 

SXρ  is the correlation between S and X and all three statistics are calculated from the 

regression sample.  Using the linear projection [ ] [ ] [ ]( ) ( ) ( )XSXEXSEXSE SX varvarρ−+≈ , 

we obtain from (5) the omitted variables formulae: 
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As Figure 1 indicates, the UC subsample inconsistently estimates SXρ .  Eligibility rules 

that permit a high SAT score to compensate for a low HSGPA lead to a within-sample SXρ  

that is lower than its population value.  This correlation is 0.52 in the population of SAT-

takers, but only 0.43 in the UC sample and 0.38 in the eligible subsample.  As a result, the 

OLS estimates of restricted models in Panels B and C of Table 2 are inconsistent, even when 

(as in Column B) the sample construction permits consistent estimation of the unrestricted 

model.   

Equation (6) suggests an estimator for 2α , 2β , and ( )Xy |var .  A consistent estimate 

of ( ) ( )XSSX varvarρ  can be obtained by regressing S on X in the unselected SAT-taker 

data.  When this is inserted into (6) along with consistent estimates of 1β  and 1γ  from the 

eligible subsample of the UC data, the resulting estimate of 2β  is consistent.  ( )Xy |Var  can 

be estimated similarly, using the population data for SXρ  and ( )Svar .  (Note that 2α  is a 

nuisance parameter for goodness-of-fit statistics, though it could easily be estimated as well.)  

The same approach estimates 3γ  and ( )Sy |var , though here the regression in the population 

data is of X  on S .  

Column C of Table 2 presents estimates of the restricted models using the omitted 

variables approach.  Coefficients of each are substantially higher than the OLS estimates in 
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Column B.13  This increases each variable�s raw validity and thereby reduces SAT�s incremental 

validity.  The usual methods in the full UC sample understate SAT�s raw validity by eight 

percent and overstate its incremental validity by 25 percent, relative to the same statistics 

estimated by the more defensible methods in Column C.   

5. Possible Endogeneity of Matriculation, Campus, and Major 

The estimates in the rightmost columns of Table 2 correct for eligibility-induced 

selection-on-unobservables and for inconsistencies in the usual treatment of selection-on-

observables, but they do not solve all selection problems.  Prediction coefficients still may be 

biased by selection coming from sources other than eligibility decisions, either from individual 

campus admissions decisions that select on unobservables or from student matriculation 

choices between the UC and private alternatives, among UC campuses, and among available 

majors.14  In this section, I present alternative specifications meant to assess the bias 

introduced by these forms of selection.  Recall that all eligible students� choice sets include at 

least one UC campus.  I thus treat the student�s decision as occurring in two distinct stages, 

first a choice of UC versus non-UC colleges, then of a campus within the UC system.15     

Consider first the admitted student�s decision about whether to attend the UC.  

Conditional on HSGPA and SAT, students with high unobserved ability might face better 

non-UC alternatives than do their peers with similar scores.  (Of course, they may also have 

better within-UC choice sets, as they are likely admitted to more desirable campuses.)  One 

might also imagine that very low ability students have increased costs or reduced benefits of 

attending UC campuses.  Either could induce endogenous sample selection that would bias 

prediction coefficients toward zero.  These stories of endogenous matriculation are most 

compelling at the extremes of the UC applicant pool, where the UC competes with Stanford 

                                                 
13 The effect is larger for the SAT coefficient in Panel C, again reflecting the high relative weight placed on 

HSGPAs in eligibility determination. 
14 Decisions about where to submit applications present yet another selection margin.  As applications have 

relatively low cost, however, it seems reasonable to assume that students apply to all colleges at which they 
have a reasonable probability of admission and at which they would consider matriculating. 

15 I do not consider separately the individual campus admissions decisions, instead allowing these decisions to 
influence students� choices at each stage through their choice sets.  An Appendix (available from the author) 
develops a more complete model of the sample selection process and argues for the estimation strategy taken 
here. 
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and other elite private colleges on the one hand, and with the California State University on 

the other.  Students in the middle are likely to be admitted to a UC campus at approximately 

their desired selectivity level and to face few comparable alternatives, an effect compounded 

by the relative rarity of middle-tier private colleges in the western United States.   

By this logic, the UC-sample distribution of unobserved characteristics, conditional on 

observed variables, may be quite truncated at the extremes of the observable distribution, 

while near the middle of this distribution there is likely to be little selection-on-unobservables.  

Selection bias should thus be less severe in a trimmed sample that discards observations at the 

extremes of the UC observable distribution, where the decision to attend the UC may be quite 

informative about unobserved motivation and ability, in favor of observations near the 

middle, where the probability of selection into the sample plausibly approaches one.  To 

evaluate whether endogenous matriculation biases the estimates presented in Table 2, models 

were re-estimated on �trimmed� samples that delete the top and bottom deciles of the eligible 

subsample.16  Columns B through D of Table 3 report estimates from samples trimmed along 

three dimensions: An average of SAT and HSGPA corresponding to the UC eligibility rules, 

which weight HSGPA heavily; fitted values from the unrestricted model in Table 2, Column 

B; and the SAT score alone.  None of the trimmed samples produces substantially different 

prediction or validity estimates than does the full sample, suggesting that student matriculation 

decisions do not much bias validity estimates for eligible students. 

<Insert Table 3 about here> 

Having decided to attend the UC, students choose a campus and then a major.  

Campus assignment is a function both of admissions decisions and of students� own 

preferences, as the latter must decide to which campuses they will apply and, if accepted to 

several, at which they will enroll.  In the extreme case, the system would offer a continuum of 

campuses and admissions rules would perfectly stratify students by preparedness; all predictive 

power from the SAT score would be incorporated in the campus assignment.  Within 

                                                 
16 I am not aware of previous uses of this sort of specification check, although it has similarities to Altonji, Elder, 

and Taber�s (2000) approach and to Heckman�s (1990) �identification at infinity.�  The essential insight is that 
the unobservable distribution is most severely truncated near the selection margin, and that this should be 
observable in the conditional FGPA distribution.  Alternative tests of the same phenomenon might look for 
changes in the residual variance or in quantile regression slopes near the selection margin. 
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campuses, variation of SAT scores and HSGPAs would be perfectly offset by unobservables  

and the fixed-effects SAT and HSGPA coefficients would be zero.  A similar problem could 

arise from the use of fixed effects for student major, if students sort into majors based on 

their ability. 

This suggests that both campus and major are potentially endogenously assigned 

within the UC-eligible subsample.  To evaluate this, I estimated the basic fixed effects model 

by instrumental variables.  It seems likely that students prefer to attend campuses near their 

homes but that unobserved ability does not vary with geography.  Thus, the probability of 

attending a particular campus might be expected to fall with the distance from that campus 

and to rise with the distance from other campuses.  Fifteen geographic variables were used as 

instruments for students� campus assignments: eight indicators for residence in the same 

county as one of the UC campuses and seven measures of the distance between the student�s 

home county and the UC campuses.17  The full set of major dummies could not be used in the 

IV model, as certain majors exist only at a single campus and therefore perfectly predict 

campus assignment.18  Column E of Table 3 reports IV estimates of a model that excludes 

major effects, while in Column F majors are collapsed into five broad categories and fixed 

effects are included for four of them.  The instruments are quite powerful predictors of 

campus assignment, and the first stage coefficients (not reported) generally have the expected 

signs.  F statistics on the exclusion of the instruments in the first stage regressions range from 

22 to 201.  The IV estimates for the SAT and HSGPA coefficients are notably smaller than in 

the base model in Column A, with a slightly larger effect on the SAT than the HSGPA.  

Finally, Columns G and H combine the two strategies, reporting IV models on the trimmed 

sample.  These echo the full-sample IV results. 

                                                 
17 The distance to UC Irvine is excluded:  Five of the eight campuses are in Southern California, and the eight 

distance variables are highly collinear.  Note that the instruments have no predicted relationship with 
admissions decisions, only with campus selection conditional on admission.  Under the assumption of constant 
treatment effects, an instrument for student preferences is sufficient.  Students not admitted to a particular 
campus are �never takers,� and their probability of attendance is unaffected by the instruments.  IV estimates 
are identified from compliers, students who are admitted to both nearby and faraway campuses and whose 
choice depends on location (Angrist, Imbens, and Rubin, 1996). 

18 Plausible instruments for major are not apparent.  Encouragingly, however, the major effects estimated in 
Table 2 are similar to more plausibly causal matching results reported by Elliot and Strenta (1988). 
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Taking all the alternative specifications in Table 3 together, the evidence suggests that 

biases in the basic model in Table 2 are small and, if anything, lead to overstatement of the 

SAT�s role in predictions.  The SAT�s incremental validity seems at least one fifth smaller 

(from Table 2) than would be indicated by the usual methods. 

6. Decomposing the SAT�s Predictive Power 

Thus far, only HSGPA and SAT have been considered as FGPA predictors.  This 

necessarily overstates the predictive accuracy that would be lost were SAT scores unavailable 

in admissions.  The SAT�s absence would be partly compensated by re-weighting other 

predictors like application essays or teacher recommendations.19  SAT-based and non-SAT-

based predictions would be more accurate, and more similar to each other, than is indicated by 

sparse models. 

In this section, I consider the implications of individual- and school-level demographic 

variables for FGPA prediction, examining whether sparse models overstate the SAT�s 

importance by allowing it to proxy for these demographic characteristics.  Specifically, I use 

the background variables to generate a predicted SAT score for each student in the UC 

database, and ask whether the predicted score can account for the relationship between SAT 

scores and FGPAs.  If the SAT is a socioeconomically neutral measure of student 

preparedness, its predictable portion should be no more or less strongly related to FGPA than 

is the unpredictable portion.  On the other hand, to the extent that SAT scores are serving to 

�launder� the demographic characteristics but do not well measure preparedness conditional 

                                                 
19 Willingham (1985) investigates the supplementary application variables that are used in admissions but are 

unavailable in the UC data.  He finds them to be significant predictors of college success when SAT is 
controlled, but does not report their effect on the SAT�s incremental contribution. 
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on observable student background variables, the fitted SAT score will have a larger coefficient 

than does the residual. 

I consider two categories of student background characteristics.  The first consists of 

individual race (Black, Hispanic, and Asian) and gender indicator variables.  The second 

describes the demographic makeup of the student�s high school.  Five variables are used: The 

fraction of students who are Black, Hispanic, and Asian; the fraction of students receiving 

subsidized lunches; and the average education of students� parents.20  Because the latter data 

are available only for public schools, analyses in this section restrict attention to public school 

students. 

The use of school-level predictors is a function of data availability, but also has a 

substantive justification:  The SAT has long been advocated as a necessary check on 

potentially heterogeneous high school grading policies (Caperton, 2001), and the College 

Board argues that admissions rules which consider only variables under the high school�s 

control induce high school grade inflation.  To the extent that the SAT�s role is to limit such a 

tendency, it might be expected to have more predictive power across high schools than within.  

The implications of this, however, depend on whether observable characteristics of high 

schools can serve the same role.  If �grade inflation� is highly correlated with socioeconomic 

variables, HSGPAs can be appropriately discounted without access to SAT scores. 

<Insert Table 4 about here> 

Columns A through C of Table 4 present several OLS regressions with SAT scores as 

the dependent variable.  Individual and school background characteristics are strong 

predictors of SATs, and together account for over one fifth of their variance in the California 

public school SAT-taking population.  Column D presents an analogous model for HSGPA 

on the same sample.  Although coefficients on the background variables are all statistically 

significant in this model, they account for a much smaller share of the HSGPA variance than 

of SATs.  Finally, Columns E through G present models estimated on the sample of eligible 

                                                 
20 The results are insensitive to the exclusion of average parental education, the least widely available background 

variable, and also to the inclusion of the school�s exam-based API score as a measure of school effectiveness.  
It would be desirable to test the importance of individual parental education, but this is not observed in the UC 
data. 
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public-school UC students.  These again indicate that SAT scores are highly correlated with 

student background, much more so than are either HSGPAs or FGPAs.  Other notable 

differences between the models are that female students have higher HSGPAs and FGPAs 

but lower SATs than males, and that Asians have higher HSGPAs but lower SATs and 

FGPAs than whites. 

The decompositions in Table 4 suggest that the SAT�s role in prediction models may 

be quite sensitive to the inclusion of background variables, particularly school characteristics, 

as predictors.  School and individual demographic characteristics explain fully 23 percent of 

the SAT variance in the UC sample, but account for only five percent of variance of each of 

the grade-based variables.  Models which replace the school characteristics with high school 

fixed effects, not reported in Table 4, indicate that observable demographics account for a 

substantial share of the across-school variation in SAT scores. 

<Insert Table 5 about here> 

Table 5 considers whether the SAT�s heavy loading onto student background 

characteristics accounts for its predictive power for FGPA.  Column A repeats the sparse 

FGPA model from Table 2 using only eligible students from public schools.  Columns B 

through D include as an additional FGPA predictor the fitted SAT score from Columns A 

through C, respectively, of Table 4.  

These models indicate that characteristics of students� schools, though not individual 

race and gender, account for a large share of the SAT�s predictive power.  Consider Column 

D, which effectively decomposes SAT scores into a portion that reflects student and school 

characteristics and an individual innovation.  Two students who differ in background 

characteristics producing a 100-point gap in fitted SAT scores (a student from an all-white 

school and an otherwise identical student from a school that is nearly all black, for example), 

earn FGPAs that differ, on average, by 0.13.  If we instead compare two students with 

identical observable characteristics but SAT residuals that differ by 100 points�i.e. students 

with the same predicted SATs but different actual SATs�the expected gap in FGPAs is only 

0.07 points.  The latter, the SAT coefficient when its easily observed correlates are controlled, 

characterizes the independent information provided by SAT scores.  The sparse models used 
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in the literature conflate the two SAT portions and predict a 0.09 point gap regardless of the 

source of SAT differences. 

Columns E through G carry out a similar exercise, this time allowing student 

background characteristics to predict FGPAs directly.  F tests reject the restrictions imposed 

in the earlier models at any reasonable confidence level, but the new models do not change 

the substantive interpretation:  SAT scores are less informative, net of the information they 

provide about student background, about FGPAs than is implied by sparse models.  

Coefficients on the background variables are generally what one might expect, with racial 

minorities and students from schools with high concentrations of Blacks, Hispanics, or low-

education parents earning lower FGPAs than white, upper-SES students even when SAT 

scores and HSGPAs are controlled.  As other authors have found, women earn higher FGPAs 

than expected given their HSGPAs and SATs (see, e.g., Leonard and Jiang, 1999).21  One 

coefficient is somewhat surprising: Asian students earn lower FGPAs than do otherwise 

similar Whites, although students from schools with many Asian students do quite well (see 

also Young, 2001).   

There is a sense in which the inclusion of variables not used for admissions in Table 5 

can lead to understatement of the SAT�s role.  The two SAT subscores have reliabilities of 

about 0.9 (College Board, 2001).  Saturation of prediction models concentrates the 

unreliability, attenuating the SAT coefficient and inflating coefficients on variables correlated 

with SAT scores even more than in sparse models.  One would not want to correct ordinary 

validity estimates for this�admissions offices do not have access to a perfectly reliable SAT 

score, only to the noisy one�but the saturated models risk overstating the coefficient on the 

fitted SAT relative to that on the actual SAT.  Table 5 reports, in square brackets, selected 

coefficients derived from a multivariate errors-in-variables correction (Greene, 2000, p. 378), 

assuming a SAT reliability ratio of 0.9.22  The adjusted coefficients indicate that the decline in 

the SAT coefficient when individual race and gender are controlled is primarily a statistical 

artifact, but do not affect the interpretation of the results for school characteristics.  

                                                 
21 This may account for the relatively small coefficient on the fitted SAT in Column B: The racial component of 

the fitted SAT appears strongly related to FGPA while the gender component seems negatively correlated. 
22 This is probably a lower bound for the SAT composite�s reliability, as true scores are likely to be more highly 

correlated across the two subtests than is noise.   
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The final rows of Table 5 present range-corrected goodness-of-fit statistics, based on 

uncorrected coefficients, for both the full models and omitted-variables specifications that 

exclude the actual SAT score but retain the predicted score or demographic variables.  The 

latter measures might be used in predictions even if SAT scores were not, and their predictive 

power is thus not attributable to the SAT score.  The inclusion of school demographic 

controls�either separately or through the predicted SAT score�lowers the SAT�s estimated 

incremental validity by about 50%. 

7. Discussion 

This study has addressed two methodological concerns generally ignored in the SAT 

validity literature.  First, it has embedded the sample selection problem in an explicit model, 

proposing a new estimator that is consistent under certain assumptions.  These assumptions 

are not general�the current analysis benefits from the UC�s unusual reliance on easily 

observed characteristics for eligibility decisions�but are more reasonable than the internally 

inconsistent assumptions needed to support usual practice.  Researchers working with data 

from other colleges will typically not be able to rely on the selection-on-observables 

assumption that permits the current analysis, but might consider using the �trimming� 

approach from Section 5 along with the omitted variables estimator to assess the magnitude of 

selection biases.  I estimate that the usual methods overstate the SAT�s incremental validity for 

University of California FGPAs by about one quarter relative to the selection-adjusted 

estimate.  Additional specifications do not indicate substantial downward bias in the latter 

from non-eligibility-based forms of sample selection. 

The selection results are interesting, but not particularly informative about admissions 

policy.  After all, an incremental validity of 0.044 may well be enough to justify use of the 

SAT.  The second portion of the analysis, focusing on the role of demographic variables in 

FGPA prediction, is of more direct substantive interest. 

The results in Tables 4 and 5 suggest that in sparse models the SAT serves in part to 

proxy for student background characteristics.  These variables account for a substantial share 

of the variance in SAT scores.  They are also strong predictors of FGPA in their own right�

together with HSGPA, school and individual demographic variables explain 45 percent of the 

variance in FGPAs, about as much as do SAT and HSGPA together in models excluding 
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background variables.  Moreover, fitted SATs predicted from student and school demographic 

variables are more strongly related to FGPAs than are actual SATs.23   

Table 5 indicates that admissions offices could admit better-prepared entering classes 

by giving explicit admissions preferences to high-SES students and to students from high-SES 

high schools.24  SAT scores would receive some weight in �best predictor� admissions rules, 

but considerably less than is indicated by sparse models. 

Few would advocate this sort of admissions rule, which might be called �affirmative 

action for high SES children,� and even fewer would consider it meritocratic.  A decision not 

to consider student background characteristics explicitly in prediction models used for 

admissions, however, does not justify excluding them from SAT validation models.  If 

background characteristics are not accounted for, the researcher will assign predictive power 

to any variable that correlates with the excluded variables, whether or not it conveys 

independent information about preparedness.  The results here indicate that the exclusion of 

student background characteristics from prediction models inflates the SAT�s apparent 

validity, as the SAT score appears to be a more effective measure of the demographic 

characteristics that predict UC FGPAs than it is of variations in preparedness conditional on 

student background.  A policymaker who preferred not to use demographic variation to 

identify students likely to succeed might want to build an admissions rule around the SAT and 

HSGPA coefficients in Table 5, while ignoring the coefficients on demographic control 

variables.25 

Regardless of one�s view of the appropriate role of student background characteristics 

in admissions, the results here suggest that the SAT should be assigned less importance than is 

implied by the sparse, selection-biased models in the validity literature.  If one wishes to 

exploit the predictive power of student background, the background variables themselves can 
                                                 
23 One interpretation is that the SES gradient in SAT scores is too low: An increase in this gradient could permit 

the predictable and unpredictable parts of the SAT to have the same coefficient in FGPA models.  The high 
explanatory power of models for SAT in Table 4, however, suggests an arguably more reasonable 
interpretation: the SAT score captures background characteristics more than it independently measures student 
preparedness.   

24 Note that affirmative action typically assigns preferences in the opposite direction from that indicated by Table 
5. 

25 A more extreme reaction would be to admit using only the residuals from models like those in Table 4, rather 
than the entire HSGPA and SAT (Studley, 2001).  Percent plans, which base admissions on within-school rank 
in class, do essentially this. 
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provide much of the information contained in the SAT score; if one does not wish to use 

background in prediction, the SAT�s contribution is smaller than the validity literature would 

suggest.  Comparing incremental validities in Tables 2 (Column A) and 5 (Column D), a 

conservative estimate is that traditional methods and sparse models overstate the SAT�s 

importance to predictive accuracy by 150 percent. 
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Fig. 1.  Conditional expectation of SAT given HSGPA (with linear regression coefficients), 
three samples.  Notes :  Conditional expectation estimated with Epanechnikov kernel 
(bw=0.15).  Number of observations = 620,013 SAT-takers; 18,587 in full UC sample; 17,346 
in eligible subsample.  UC sample and subsample HSGPAs incorporate UC bonuses for grades 
in designated honors courses.



Table 1
Summary statistics for UC matriculant and SAT-taker samples

Mean S.D. Mean S.D. Mean S.D.
(A) (B) (C) (D) (E) (F)

Number of observations
FGPA 2.84 0.64 2.88 0.62
SAT 1,091 179 1,104 172 904 226

HSGPAa 3.75 0.46 3.81 0.39 3.24 0.63
Black 4% 3% 7%
Hispanic 14% 12% 19%
Asian 39% 40% 22%
Female 53% 53% 55%

% with school data 81% 81% 76%

Skl: Frac. Blackb 7% 10% 7% 10% 8% 11%
Skl: Frac. Hispanic 27% 23% 27% 22% 30% 24%
Skl: Frac. Asian 21% 18% 21% 18% 17% 17%
Skl: Frac. lunch 25% 22% 24% 21% 28% 22%
Skl: Avg. parental ed. 14.4 1.3 14.5 1.3 14.2 1.3

bSchool variables report means and standard deviations of student-level measures among the public
school students for which the data are available.

18,587 17,346 620,013

aHSGPAs in A-D are calculated using the UC's weighting rule, which assigns 4 points to an A grade
and awards an extra point to grades earned in honors courses.

All UC Eligible Only
CA SAT-takers,

1994-1998
UC Sample



Table 2

Full Sample
n=18,587

(A) (B) (Cb)

Panel A: Both Predictors
HSGPA 0.507 0.571

(0.010) (0.012)
SAT / 1000 0.930 0.928

(0.027) (0.028)

R2 c 0.409 0.454
R 0.639 0.674

Panel B: HSGPA only
HSGPA 0.662 0.726 0.744

(0.011) (0.013) (0.013)

R2 0.342 0.392 0.396
R 0.585 0.626 0.630

Panel C: SAT only
SAT / 1000 1.485 1.414 1.758

(0.028) (0.029) (0.032)

R2 0.240 0.228 0.284
R 0.490 0.478 0.533

SAT increment to goodness-of-fit (model A - model B)

R2 0.067 0.062 0.058
R 0.055 0.047 0.044

cAll fit statistics are corrected for restriction of range, extending models to all 620,013
California SAT-takers. Campus and major effects are excluded from fit calculations.
See text for details.

Basic validity models, traditional and proposed methods (standard errors

in parentheses)a

Eligible Subsample
n=17,346

aEach column reports three regressions and associated goodness-of-fit statistics. Panel
A includes fixed effects for 6 campuses and 18 freshman majors; Panels B and C
constrain these effects to be the same as in A.
bRestricted models in Panels B and C estimated from Panel A in column B by proposed
omitted variables correction.



Table 3

Specification checks (standard errors in parentheses)a

Elig.
index

Pred.
FGPA

SAT

(A) (B) (C) (D) (E) (F) (G) (H)

Prediction coefficients (model A)
HSGPA 0.57 0.61 0.59 0.58 0.45 0.49 0.44 0.48

(0.01) (0.02) (0.02) (0.01) (0.03) (0.04) (0.05) (0.05)
SAT / 1000 0.93 0.92 0.95 0.89 0.65 0.71 0.53 0.58

(0.03) (0.03) (0.04) (0.04) (0.08) (0.09) (0.11) (0.12)
Campus FEs y y y y endog. endog. endog. endog.
Major FEs y y y y n y (4) n y (4)

Goodness-of-fit statistics (corrected for restriction of range) c

R2 A: SAT and HSGPA 0.454 0.472 0.465 0.457 0.259 0.290 0.204 0.229
B: HSGPA only 0.396 0.417 0.407 0.403 0.231 0.258 0.187 0.210
C: SAT only 0.284 0.286 0.289 0.280 0.155 0.173 0.114 0.127
A-B: SAT increment 0.058 0.054 0.058 0.054 0.028 0.031 0.017 0.019

R A: SAT and HSGPA 0.674 0.687 0.682 0.676 0.509 0.538 0.452 0.478
B: HSGPA only 0.630 0.646 0.638 0.635 0.481 0.508 0.432 0.458
C: SAT only 0.533 0.535 0.538 0.529 0.393 0.416 0.337 0.357
A-B: SAT increment 0.044 0.041 0.044 0.041 0.028 0.030 0.019 0.021

cFit statistics extend models to 620,013 SAT-takers, using omitted variables estimator and constraining
fixed effects in restricted models.

aColumns A through D estimated by OLS on the UC-eligible subsample; columns E through H by IV.
Number of observations = 17,346 in A, E, F. Columns B through D, G, and H delete observations in top
and bottom deciles along listed index, retaining 13,879 observations.

Basic
model

Sample trimmed on:

Full sample
Trimmed on
pred. FGPA

Instrumental variables

bInstruments are indicators for residence in the same county as each of the UC campuses and the continuous
distance between the home county and each campus (excluding Irvine).



Table 4

Sample

Dependent Variable HSGPA SAT/1000 HSGPA FGPAb

(A) (B) (C) (D) (E) (F) (G)

Intercept 0.979 0.049 3.011 0.488 4.231 2.532
(0.001) (0.008) (0.026) (0.039) (0.095) (0.156)

Black -0.220 -0.151 -0.403 -0.105 -0.244 -0.291
(0.001) (0.001) (0.004) (0.008) (0.020) (0.033)

Hispanic -0.175 -0.104 -0.186 -0.105 -0.152 -0.248
(0.001) (0.001) (0.003) (0.005) (0.011) (0.019)

Asian -0.026 -0.010 0.134 -0.012 0.091 -0.067
(0.001) (0.001) (0.002) (0.003) (0.008) (0.013)

Female -0.044 -0.040 0.120 -0.068 0.036 0.061
(0.001) (0.001) (0.002) (0.003) (0.006) (0.010)

Skl: Frac. Black -0.253 -0.119 -0.159 -0.076 -0.039 -0.389
(0.003) (0.003) (0.010) (0.015) (0.037) (0.061)

Skl: Frac. Hispanic -0.023 0.057 -0.084 0.061 -0.021 -0.099
(0.003) (0.003) (0.008) (0.012) (0.031) (0.050)

Skl: Frac. Asian 0.041 0.037 -0.272 0.061 -0.184 0.195
(0.002) (0.002) (0.006) (0.008) (0.021) (0.034)

Skl: Frac. free lunch 0.001 0.006 0.037 -0.022 -0.048 -0.017
(0.003) (0.003) (0.008) (0.012) (0.030) (0.049)

Skl: Avg. parental ed. 0.062 0.063 0.020 0.045 -0.026 0.033
(0.001) (0.001) (0.002) (0.002) (0.006) (0.010)

R2 0.134c 0.177 0.225 0.069 0.230 0.050 0.053

Individual and school characteristics as determinants of SAT scores and GPAs (standard

errors in parentheses)a

bFGPA is adjusted to remove estimated campus and major effects from Table 1, column D.
cReported R2 is the traditional measure, estimated within-sample and unadjusted for restriction of range.

SAT-takers UC sample (UC elig. only)

SAT/1000

aStudents from public high schools with non-missing data only. Number of observations = 473,758 in
columns A-D; 14,102 in E-G.



Table 5

(A) (B) (C) (D) (E) (F) (G)

HSGPA 0.583 0.581 0.619 0.602 0.554 0.621 0.604
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

[0.556]b [0.554] [0.595] [0.578] [0.526] [0.597] [0.578]
SAT/1000 0.906 0.875 0.694 0.705 0.886 0.694 0.725

(0.031) (0.034) (0.034) (0.036) (0.034) (0.034) (0.036)
[1.050] [1.032] [0.832] [0.852] [1.047] [0.833] [0.880]

Demographic measures

Predicted SAT/1000c 0.187 0.818 0.635
(0.078) (0.055) (0.056)
[0.066] [0.698] [0.511]

Black -0.136 -0.073
(0.030) (0.030)

Hispanic -0.125 -0.082
(0.017) (0.017)

Asian -0.094 -0.122
(0.010) (0.011)

Female 0.110 0.100
(0.010) (0.010)

Skl: Frac. Black -0.326 -0.296
(0.053) (0.054)

Skl: Frac. Hispanic -0.195 -0.146
(0.045) (0.045)

Skl: Frac. Asian 0.145 0.265
(0.028) (0.030)

Skl: Frac. free lunch 0.032 0.026
(0.044) (0.043)

Skl: Avg. Parental Ed. 0.021 0.016
(0.009) (0.009)

R2 (range corrected)d 0.459 0.457 0.471 0.462 0.461 0.475 0.481
Without SAT 0.404 0.410 0.445 0.435 0.414 0.449 0.454
SAT Increment 0.056 0.047 0.027 0.027 0.048 0.026 0.027

R (range corrected) 0.678 0.676 0.687 0.680 0.679 0.689 0.694
Without SAT 0.635 0.641 0.667 0.660 0.643 0.670 0.674
SAT Increment 0.042 0.035 0.020 0.020 0.036 0.019 0.020

Individual and school characteristics in FGPA prediction (standard errors in parentheses)a

aSample in all columns consists of UC-eligible, public school graduates with non-missing data. Number of observations
= 14,102. All models include fixed effects for 6 campuses and 18 freshman majors.

cPredicted SAT is fitted value from regressions reported in Table 4, columns A through C, respectively.
dGoodness-of-fit statistics extend results to 473,758 public school SAT-takers. "Without SAT" statistics are based on
unreported restricted models that exclude the SAT score and are calculated by omitted variables estimator described in
text.

bErrors-in-variables corrected coefficients, assuming SAT reliability = 0.9, in square brackets. Corrected demographic
variable coefficients are not shown.


