
Supplementary materials for

“Varying impacts of letters of recommendation on college

admissions”

A Additional analyses and robustness checks

This appendix section addresses how our conclusions change with different estimation approaches,
different data and sample definitions, and under violations of the key ignorability assumption.

A.1 Augmented and machine learning estimates

We now consider augmenting the weighting estimator with an estimate of the prognostic score,
m̂(x, g). In Appendix Figure D.11 we show estimates after augmenting with ridge regression,
fully interacting φ(X) with the strata indicators; we compute standard errors via Equation (15),
replacing Yi− µ̂0g with the empirical residual Yi−m̂(Xi, g). Because the partially pooled balancing
weights achieve excellent local balance for φ(X), augmenting with a model that is also linear in φ(X)
results in minimal adjustment. We therefore augment with random forests, a nonlinear outcome
estimator. Tree-based estimators are a natural choice, creating “data-dependent strata” similar in
structure to the strata we define for G. For groups where the weights γ̂ have good balance across
the estimates m̂(x, g), there will be little adjustment due to the outcome model. Conversely, if the
raw and bias-corrected estimate disagree for a subgroup, then the weights have poor local balance
across important substantive data-defined strata. For these subgroups we should be more cautious
of our estimates.

Figure D.10 shows the random forest-augmented effect estimates relative to the un-augmented
estimates; the difference between the two is the estimated bias. Overall, the random forest estimate
of the bias is negligible and, as a result, the un-adjusted and adjusted estimators largely coincide.
Augmentation, however, does seem to stabilize the higher-order interaction between AI and URM
status, with particularly large adjustments for the highest AI group (AI ≥ 20%). This suggests that
we should be wary of over-interpreting any change in the relative impacts for URM and non-URM
applicants as AI increases.

Finally, we use Bayesian causal forests (BCF; Hahn et al., 2020) to estimate the conditional
average treatment effect given the covariates and subgroup, τ̂(x, g), then aggregate over the treated
units in the group to estimate the CATT, τ̂g = 1

n1g

∑
Gi=g

Wiτ̂(Xi, Gi). This approach gives no

special consideration to the subgroups of interest: G enters symmetrically with the other covariates
X. Appendix Figure D.15 shows the results. The BCF estimate of the overall ATT is nearly
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Figure A.1: Estimated effect of letters of recommendation on admission rates with and without
augmentation via a random forest outcome model.

the same as our main estimates and similarly finds no variation between URM and non-URM
applicants. However, the BCF estimates find less heterogeneity across admissibility levels and
little to no heterogeneity across URM and admissibility subgroups, in part because this approach
regularizes higher-order interactions in the CATE function. While this can be beneficial in many
cases, with pre-defined subgroups this can lead to over-regularization of the effects of interest, as
happens here. Furthermore, the BCF estimates are extremely precise, even in regions with limited
overlap (see discussion in Hahn et al., 2020). Overall, we find this approach less credible in our
setting with pre-defined subgroups of interest.

A.2 Alternative data and sample definitions

Here we consider alternative data and sample definitions as well as additional data sources. First,
we consider effects on an intermediate outcome: whether the second reader — who has access to
the LORs — gives a “Yes” score. Because these are design-based weights, we use the same set of
weights to estimate effects on both second reader scores and admissions decisions. We find a similar
pattern of heterogeneity overall.

With this outcome we can also make use of a within-study design to estimate treatment effects,
leveraging scores from additional third readers who did not have access to the letters of recom-
mendation. After the admissions process concluded, 10,000 applicants who submitted letters were
randomly sampled and the admissions office recruited several readers to conduct additional evalu-
ations of the applicants (Rothstein, 2017). During this supplemental review cycle, the readers were
not given access to the letters of recommendation, but otherwise the evaluations were designed
to be as similar as possible to the second reads that were part of the regular admissions cycle; in
particular, readers had access to the first readers’ scores.
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With these third reads we can estimate the treatment effect by taking the average difference
between the second read (with the letters) and the third read (without the letters). One major
issue with this design is that readers might have applied different standards during the supplemental
review cycle. Regardless, if the third readers applied a different standard consistently across URM
and admissibility status, we can distinguish between treatment effects within these subgroups.

Appendix Figures D.13 and D.14 show the results for both approaches. Overall for second
reader scores we see a similar structure of heterogeneity as for admission rates, although there does
not appear to be an appreciable decline in the treatment effect for the highest admissibility non-
URM applicants. The two distinct approaches yield similar patterns of estimates overall, with the
largest discrepancy for applicants with AI scores between 5% and 10%, particularly for non-URM
applicants. However, this group has a very low effective sample size, and so the weighting estimates
are very imprecise.

Finally, recall that an applicant may not have submitted an LOR for one of two reasons: (i)
they were not invited to do so, and (ii) they did not submit even though they were invited. We
assess the sensitivity of our results to excluding this first group when using the weighting approach.
Appendix Figure D.16 shows the estimated effects with the full sample and restricted to applicants
who were invited to submit an LOR. The point estimates are similar, although the estimated effect
on non-URM low admissibility applicants is higher in the restricted sample. Additionally, although
the number of control units is much smaller in the restricted sample — 3,452 vs 29,398 — the
standard errors are only slightly larger. This reflects the fact the weighting approach finds that few
of the no-invitation control units are adequate comparisons to the treated units.

A.3 Formal sensitivity analysis

We assess sensitivity to the key assumption underlying our estimates, Assumption 1: an applicant’s
LOR submission is conditionally independent of that applicant’s potential admission decision. Since
we observe all the information leading to an invitation to submit an LOR, we believe that Assump-
tion 1 is plausible for this step in the process. However, applicants’ decisions to submit LORs given
that invitation might vary in unobserved ways that are correlated with admission.

To understand the potential impact of such unmeasured confounding, we perform a formal
sensitivity analysis. Following the approach in Zhao et al. (2019); Soriano et al. (2020), we allow
the true propensity score conditioned on the control potential outcome e(x, g, y) ≡ P (W = 1 |
X = x,G = g, Y (0) = y) to differ from the probability of treatment given covariates x and group
membership g, e(x, g), by a factor of Λ in the odds ratio:

Λ−1 ≤
e(x,g)/1−e(x,g)

e(x,g,y)/1−e(x,g,y)
≤ Λ. (1)

This generalizes Assumption 1 to allow for a pre-specified level of unmeasured confounding, where
Λ = 1 corresponds to the case with no unmeasured confounding. The goal is then to find the
smallest and largest ATT, [τmin, τmax], consistent with a given Λ for the marginal sensitivity model
in Equation (1). Following Soriano et al. (2020), we use the percentile bootstrap to construct a
95% confidence for this bound, [L,U ]. In particular, we focus on the largest value of Λ for which
the overall ATT remains statistically significant at the 95% level (i.e., L > 0), which we compute
as Λ = 1.1.

We then modify this approach to focus on subgroup differences; we focus on differences between
URM and non-URM applicants but can apply this to other subgroups as well. First, we use the same
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procedure to find bounds on the effect for URM applicants, [Lurm, Uurm], and non-URM applicants,
[Lnon, Unon]. We then construct worst-case bounds on their difference, [Lurm −Unon, Uurm −Lnon].
Although we fail to detect a difference between the two groups, there may be unmeasured variables
that confound a true difference in effects. To understand how large the difference could be, we
use the sensitivity value that nullifies the overall effect, Λ = 1.1 and construct a 95% confidence
interval for the difference. We find that we cannot rule out a true difference as large as 12 pp, with
95% confidence interval (−12%, 8.2%).

To understand this number, Appendix Figure D.17 shows the strength required of an unmea-
sured confounder in predicting the admission outcome (measured as the magnitude of a regression
of the outcome on the unmeasured confounder) to produce enough error to correspond to Λ = 1.1,
for a given level of imbalance in the unmeasured confounder between applicants who did and did
not submit LORs.1 It compares these values to the imbalance in the components of φ(X) before
weighting and the regression coefficient for each component where we regress the outcome on φ(X)
for the control units. We find that the unmeasured confounder would have to have a higher level
of predictive power or imbalance than any of our transformed covariates, except for the AI. Thus,
an unmeasured confounder would have to be relatively strong and imbalanced in order to mask a
substantial difference between URM and non-URM applicants.

A.4 Simulation of universal LOR policy

Our main analysis considers the impact of submitting LORs for each applicant in isolation, following
the structure of the UC Berkeley pilot study. We now use these estimates to conduct a simple policy
simulation for the impact of requiring LORs for all UC Berkeley applicants on the composition of
the admitted class, relative to the current policy of no LORs. We begin with the same sample as
our previous analyses; in this exercise, however, we take explicit account of capacity constraints.
The exercise has three basic steps: (1) use our prior estimates to predict the admissions probability
for each applicant in isolation if no applicants submitted LORs and if all applicants submitted
LORs;2 (2) adjust these probabilities to set the expected number of admitted students under each
policy to the observed number;3 and (3) use the adjusted probabilities to construct an “expected”
admitted class under each policy.

This policy simulation is necessarily simplistic, and ignores many complications, such as a
possible change in the composition of the applicant pool as a result of requiring LORs. Nonetheless,
this exercise captures the important role of an overall cap on undergraduate admissions, which
does not affect our individual estimates above: while we estimate that LORs increase the average
applicant’s admissions probability by around 5 percent in isolation, the feasible policy cannot
also increase the total number of all undergraduates by 5 percent. Thus, our focus above on the

1Letting δ denote this imbalance, the absolute regression coefficient must be larger than max{|Lurm−Unon|, |Uurm−
Lnon|}/δ = 0.592/δ.

2We first use the predictions of the baseline probability of admission without LORs using the random forest
estimator from Appendix A.1. We then add the estimated treatment effects from the right panel in Figure 5 to the
probability of admission for each applicant in the 2016 cohort, according to their subgroup. We assume here that
the subgroup ATT equals the subgroup Average Treatment Effect, E[Y (1)− Y (0) | G = g,W = 1] = E[Y (1)− Y (0) |
G = g], for each URM × AI subgroup.

3A naive adjustment can lead to estimated probabilities outside [0, 1]. To account for this, we iteratively subtract
the average difference between the expected and simulated admissions rates and then truncate the probabilities to
be between 0 and 1. We repeat these centering and truncation steps until all estimates are in [0, 1] and the expected
number of admits equals the observed number of admits for our subsample, 6,874.
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differential impacts of LORs is especially relevant for this exercise; see also Section B.1.
Appendix Figure D.18 shows the simulated effect of the LOR policy on the number of admitted

applicants in each subgroup. Consistent with our point estimates, we find a negligible overall
impact on URM applicants, with roughly 90 fewer URM admitted applicants overall (less than
half a percent of all URM applicants in this sample). We see larger (if still small) changes across
the Admissibility Index: more medium and high admissibility applicants are admitted, offset by
fewer low admissibility applicants, both URM and non-URM. Thus, based on this back-of-the-
envelope simulation, we find that requiring LORs for all applicants would have minimal effects on
the URM composition of admitted students, while raising the number of applicants with traditional
qualifications.

5



B Additional analytic results

B.1 Balance when estimating the difference in effects

Here we consider targeting the difference in treatment effects for groups g and g′. Because we have
access to the treated potential outcomes for treated units, we will focus on the difference in the
counterfactual means, µ̃0g − µ̃0g′ . Under the linear model in Section 4.1, the estimation error for
the difference is

µ̂0g − µ̂0g′ − (µ̃0g − µ̃0g′) = η̄gg′ ·

(
n∑
i=1

γ̂i(1−Wi)

[
1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
φ(Xi)

−
n∑
i=1

Wi

[
1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
φ(Xi)

)

+
(
ηg − η̄gg′

)
·

∑
Gi=g

γ̂i(1−Wi)φ(Xi)−
1

n1g

∑
Gi=g

Wiφ(Xi)


+
(
ηg′ − η̄gg′

)
·

∑
Gi=g′

γ̂i(1−Wi)φ(Xi)−
1

n1g

∑
Gi=g

Wiφ(Xi)


+

1

n1g

∑
Gi=g

(1−Wi)γ̂iεi +
1

n1g′

∑
Gi=g′

(1−Wi)γ̂iεi,

(2)

where η̄gg′ = 1
2(ηg + ηg′).

From this, we see that the estimation error now includes a combined measure of imbalance
(the first term) as well as the level of local balance in subgroups g and g′ (the second two terms).
However, this is the imbalance in a transformed set of covariates:

φ̃gg′(Xi) ≡
[

1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
φ(Xi).

Intuitively, the imbalance in this transformation is the imbalance in the difference in covariate
profiles of the two subgroups, across treatment and control. Practically, we can control this measure
by including the transformed covariate vector φ̃gg′(Xi) into the set of covariates that we balance,
for a given contrast between two groups. In our application, when we include this additional set
of covariates for the URM/non-URM contrast the results are nearly identical, indicating that this
contrast is already well balanced.

B.2 No interference between applicants

As we discuss in the main text, we consider the availability of LORs as an individual-level treatment,
and aim to uncover the average effect of LORs among the students who submit them. We assume
independence of admissions across students — in particular, that the availability of LORs for one
student does not affect any other student’s admission probability. However, this cannot be strictly
true in our setting. There are two possible sources of non-independence. First, the number of
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admitted students is constrained, so admitting one student reduces the number of admissions offers
that can be made to others. Second, many small colleges and elite universities treat admissions as a
portfolio problem, aiming to balance a range of characteristics within the pool of admitted students.
Under this approach, admitting (say) a tuba player might dramatically reduce the admissions
chances of other applicants who play the tuba as well.

Neither of these is a major consideration at UC Berkeley, which admitted over 14,500 first-year
students — as well as roughly 4,300 transfer students — for Fall 2017, in a relatively mechanistic
way. With the exception of recruited athletes, who we exclude from our sample, each applicant is
considered separately, with very limited interaction among the readers reviewing applications and
no stage of the process at which balancing considerations can arise. Readers generally do not confer
about application scores, and the capacity constraint is enforced only at the very end, where the
combined reader scores are converted to admissions decisions; tiebreaking in this process considers
very limited information about applicants and does not incorporate the portfolio balancing con-
siderations that are prominent elsewhere (Stevens, 2009). Moreover, the total number of admitted
undergraduates fluctuates meaningfully from year to year, with fewer than 12,000 first-year stu-
dents admitted for Fall 2014 and nearly 15,500 first-year students admitted for Fall 2020, so is not
a hard cap. Thus, while each admitted student must on average crowd out about one other student
who would otherwise have been admitted, this crowding out is imperfect and is spread across many
thousands of students.

We now formalize different types of dependence, following the literature on causal inference
with interference; see Miles et al. (2019) for a closely related setup. Formally, let Yi(W) be the
potential outcome associated with the vector of all units’ treatment assignments, W ∈ {0, 1}N ,
which we can equivalently write in terms of unit i’s own treatment and the vector of remaining
treatments: Yi(W) = Yi(Wi,W−i). The substantive assumption that UC Berkeley does not engage
in “portfolio balancing” for the LOR pilot study applicants corresponds to a stratified interference
assumption: unit i’s potential outcomes only depend on the proportion of units treated, rather
than the identity of those units (Hudgens and Halloran, 2008). Formally, under this assumption
can write unit i’s potential outcomes as:

Yi(W) = Yi(Wi,W−i) = Yi

Wi,
1

N − 1

∑
j 6=i

Wj

 = Yi(Wi, W̄−i),

where W̄−i = 1
N−1

∑
j 6=iWj is the fraction of remaining units treated. Without additional restric-

tions, analysis is still possible but challenging (see Miles et al., 2019).
In our analysis, we differentiate between two key scenarios based on the fraction of treated units,

W̄ , noting that W̄ ≈ W̄−i for large N . Let c be a given threshold for proportion treated, such that
we consider two scenarios: W̄ ∈ (0, c) and W̄ ∈ [c, 1]. Our substantive assumption for the main
analysis is that, so long as there are relatively few applicants submitting LORs, the overall limit on
undergraduate admissions is not binding and we can effectively ignore interference between units.
Formally:

for W̄ < c : Yi(Wi, W̄−1) = Yi(Wi) for all i = 1, . . . , N. (3)

In Appendix A.4, we instead consider the opposite scenario in which all applicants are required to
submit LORs: W̄ = 1. Here, we no longer believe that Equation (3) is a reasonable restriction,
and instead use a simple policy simulation to assess the overall impact of such a policy.
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C Simulation study

We now present simulations assessing the performance of our proposed approach versus traditional
inverse propensity score weights fit via regularized logistic regression as well as outcome modelling
with machine learning approaches. To better reflect real-world data, we generate correlated covari-
ates and include binary and skewed covariates. For each simulation run, with d = 50 covariates,

we begin with a diagonal covariance matrix Σ where Σjj = (d−j+1)5

d5
and sample a random orthog-

onal d × d matrix Q to create a new covariance matrix Σ̃ = QΣ with substantial correlation. For

n = 10, 000 units, we draw covariates from a multivariate normal distribution Xi
iid∼ N(0, Σ̃). We

then transform some of these covariates. For j = 1, 11, 21, 32, 41 we dichotomize the variable and
define X̃ij = 1{Xij ≥ q.8(X·j)}, where q.8(X·j) is the 80th percentile of Xj among the n units. For
j = 2, 7, 12, ..., 47 we create a skewed covariate X̃ij = exp(Xij). To match our study, we create
discrete subgroup indicators from the continuous variable Xid. To do this, we create a grid over
Xid with grid size n

G , and sample G− 1 points from this grid. We then create subgroup indicators
Gi by binning Xid according to the G− 1 points. We consider G ∈ {10, 50} groups.

With these covariates, we generate treatment assignment and outcomes. We use a separate
logistic propensity score model for each group following Equation (7),4

logit e(Xi, Gi) = αGi + (µβ + Uβg �Bβ
g ) ·Xi, (4)

and also use a separate linear outcome model for each group,

Yi(0) = η0Gi + (µη + Uηg �Bη
g ) ·Xi + εi, (5)

where εi ∼ N(0, 1) and � denotes element-wise multiplication. We draw the fixed effects and
varying slopes for each group according to a hierarchical model with sparsity. We draw the fixed

effects as αg
iid∼ N(0, 1) and η0g

iid∼ N(0, 1). For the slopes, we first start with a mean slope vector
µβ, µη ∈ {− 3√

d
, 3√

d
}K , where each element is chosen independently with uniform probability. Then

we draw isotropic multivariate normal random variables Uβg , U
η
g

iid∼ MVN(0, Id). Finally, we draw

a set of d binary variables Bβ
gj , B

η
gj that are Bernoulli with probability p = 0.25. The slope is then

constructed as a set of sparse deviations from the mean vector, which is µβ + Uβg � Bβ
g for the

propensity score and µη + Uηg �Bη
g for the outcome model.

To incorporate the possibility that treatment effects vary with additional covariates that are not
the focus of our analysis, we generate the treatment effect for unit i as τi = Xid −Xi3 + 0.3XidXi3

and set the treated potential outcome as Yi(1) = Yi(0) + τiWi. Note that the effect varies with the
underlying continuous variable Xid that we use to form groups, as well as the additional variable
Xi3. The true ATT for group g in simulation j is thus τgj = 1

n1g

∑
Gi=g

Wi(Yi(1)− Yi(0)), and the

overall ATT is τj = 1
n1

∑n
i=1Wi(Yi(1)− Yi(0)).

For j = 1, . . . ,m with m = 500 Monte Carlo samples, we estimate the treatment effects for
group g, τ̂gj , and the overall ATT, τ̂j , and compute a variety of metrics. Following the metrics
studied by Dong et al. (2020), for subgroup treatment effects we compute (a) the mean abso-

lute bias across the G treatment effects, 1
m

∑m
j=1

∣∣∣1g∑G
g=1 τ̂gj − τg

∣∣∣, and (b) the mean root mean

4The logistic specification differs from the truncated linear odds in Equation 16. If the transformed covariates
φ(Xi) include a flexible basis expansion, the particular form of the link function will be less important.
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square error
√

1
mG

∑m
j=1

∑G
g=1(τ̂gj − τg)2. For the overall ATT we measure (a) the absolute bias∣∣∣ 1m∑m

j=1 τ̂j − τj
∣∣∣ and (b) the root mean square error

√
1
m

∑m
j=1(τ̂j − τj)2.

We compute treatment effects for the following eight estimators:

• Partially pooled balancing weights: approximate balancing weights that solve Equation (13),
using G as the stratifying variable and prioritizing local balance by setting λg = 1

n1g
.

• Augmented balancing weights: augmenting the partially pooled balancing weights as in Equa-
tion (21) where m̂0(x, g) is fit via ridge regression with all interactions.

• Fully pooled balancing weights: approximate balancing weights that solve Equation (13), but
ignore local balance by setting λ→∞, thus fully pooling towards the global model. This is
equivalent to stable balancing weights in Equation (8) with an exact global balance constraint
δ = 0.

• No pooled balancing weights: approximate balancing weights that solve Equation (13), but
without the exact global balance constraint.

• Full interaction IPW: traditional IPW with a fully interacted model that estimates a separate
propensity score within each stratum as in Equation (7).

• Fixed effects IPW: full interaction IPW with stratum-specific coefficients constrained to be
equal to a global parameter βg = β for all g.

• Full interaction ridge regression outcome model: Estimating µ0g via µ̂0g = 1
n1

∑
Gi=g

Wim̂0(Xi, g),
where µ̂0(x, g) is the same ridge regression predictor as for augmented balancing weights

• Bayesian Causal Forests (BCF): Estimating τg as 1
n1g

∑
Gi=g

Wiτ̂i, where τ̂i are the posterior

predictive means from a Bayesian Causal Forest estimator (Hahn et al., 2020).

For the fully interacted specification of the logistic regression in IPW and the ridge regression
in the augmented balancing weights, we include a set of global parameters µβ so that the slope for
group g is µβ + ∆g, with a squared L2 penalty for each component. These are correctly specified
for the models above. We estimate the models with glmnet (Friedman et al., 2010) with the
hyperparameter chosen through 5-fold cross validation.

Appendix Figure D.2 shows the results for the overall ATT and for subgroup effects. In most
cases, the partially pooled approximate balancing approach has much lower bias and RMSE than the
logistic regression-based IPW estimator; however, the RMSEs are comparable with 50 subgroups.
Furthermore, prioritizing local balance with partial pooling yields lower bias and RMSE than
ignoring local balance entirely with the fully pooled approach. Finally, including the global balance
constraint yields much lower bias for the ATT in some settings, with relatively little cost to the
subgroup estimates.

The partially-pooled balancing weights estimator, which is transparent and design-based, also
performs nearly as well as the black-box BCF method. Augmenting the partially-pooled weights
provides some small improvements to the bias, indicating that the weights alone are able to achieve
good balance in these simulations, and a larger improvement in the RMSE in the setting with
many groups where the weighting estimator alone have larger variance. Finally, Appendix Figure
D.3 shows the coverage of 95% intervals for the different approaches. We see that the weighting
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estimator, both with and without augmentation, has reasonable uncertainty quantification, with
much better coverage than either of the two model-based approaches.

10



D Additional figures and tables

AI Range URM Number of Applicants Number Submitting LOR Proportion Treated

< 5%
URM 11,832 2,157 18%
Not URM 6,529 607 9%

5% - 10%
URM 3,106 1,099 35%
Not URM 2,099 536 25%

10% - 20%
URM 2,876 1,212 42%
Not URM 2,495 828 33%

> 20%
URM 4,645 2,345 50%
Not URM 6,959 2,359 34%

Table D.1: Number of applicants and proportion treated by subgroup.
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(d) By URM status and invitation to submit an LOR

Figure D.1: Calibration of the admissibility index (a) in the full sample, (b) by URM status and
college applied to, (c) by invitation to submit an LOR, and (d) by URM status and invitation to
submit. The points are binned scatter plots for the quantiles in intervals of 5% and the lines are
smoothed estimates of the relationship between the observed admission rate for applicants that did
not submit LORs and the AI. The distribution of the quantiles emphasizes that most applicants
are very unlikely to be admitted. For most groups, over three quarters have AI scores below 25%.
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Figure D.2: Performance of approximate balancing weights, traditional IPW with logistic regres-
sion, and outcome modelling for estimating subgroup treatment effects.

13



Figure D.3: Coverage for approximate balancing weights, traditional IPW with logistic regression,
and outcome modelling for estimating subgroup treatment effects.
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Figure D.4: Distribution of covariate balance measured by the mean standardized difference for
different weighting methods.

15



●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0% 10% 20% 30% 40% 50%

Overall

Not URM

URM

> 20%

10% − 20%

5% − 10%

< 5%

Imbalance in AI relative to unweighted
●

●

●

●

Balancing Weights: Partially Pooled

Balancing Weights: Fully Pooled

Balancing Weights: No Pooling

IPW: Full Interaction

(a) Overall and by URM status and AI.

●

●

●

●

●

●

●

●

●

●

>>>

>

●

●

●

●

●

●

●

●

●

●

●

●

>

U
R

M
N

ot U
R

M

0% 25% 50% 75% > 100%

> 20%

10% − 20%

5% − 10%

< 5%

> 20%

10% − 20%

5% − 10%

< 5%

Imbalance in AI relative to unweighted

(b) By URM status interacted with AI.

Figure D.5: Imbalance in the admissibility index after weighting relative to before weighting, overall
and within each subgroup. For several subgroups, the fully pooled balancing weights procedure
results in increased imbalance in the admissibility index, denoted by an arrow.
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Figure D.6: Weights on control units from solving the approximate balancing weights problem (13).
Not pictured: the 66% of control units that receive zero weight.

16



●
●

●
●

●
●

●
●

●
●

●
●

●
●

10% 20% 30% 40%

Overall

Not URM

URM

AI > 20%

AI 10% − 20%

AI 5% − 10%

AI < 5%

Percent admitted

● ●Letter of Rec No Letter of Rec

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

U
R

M
N

ot U
R

M

0% 10% 20% 30% 40% 50%

AI > 20%

AI 10% − 20%

AI 5% − 10%

AI < 5%

AI > 20%

AI 10% − 20%

AI 5% − 10%

AI < 5%

Percent admitted

● ●Letter of Rec No Letter of Rec
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Figure D.8: Estimated log risk ratio of admission with and without letters of recommendation ±
two standard errors computed via the delta method, overall and by URM status and AI.
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Figure D.9: Estimated effect of letters of recommendation on admission rates for Engineering and
Letters and Science applicants.
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Figure D.10: Estimated effect of letters of recommendation on admission rates with and without
augmentation via a random forest outcome model.
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Figure D.11: Estimated effect of letters of recommendation on admission rates with and without
augmentation via ridge regression with 5-fold cross validation.
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Figure D.12: Estimated effect of letters of recommendation on admission rates for comparable
weighting estimators.
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Figure D.13: Effects on second reader scores overall, by URM status, and by AI, estimated via (a)
the partially pooled balancing weights estimator and (b) the within-subject design.
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Figure D.14: Effects on second reader scores by URM status interacted with AI, estimated via (a)
the partially pooled balancing weights estimator and (b) the within-subject design.
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Figure D.15: Estimated effect of letters of recommendation on admission rates via Bayesian Causal
Forests (Hahn et al., 2020).
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Figure D.16: Estimated effect of letters of recommendation on admission rates via weighting in the
full sample and restricting to applicants who were invited to submit an LOR
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Figure D.17: Amplification of a sensitivity analysis. The line shows the magnitude of the regression
coefficient and the magnitude of the imbalance in an unmeasured standardized covariate required
to produce enough bias to remove the effect. Points correspond to the regression coefficients and
imbalance before weighting for the 51 components of φ(X).
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Figure D.18: Projected change in number of admitted applicants if all applicants submitted a letter
of recommendation: by URM status, by Admissibility Index, and by URM × AI. Points are scaled
by the expected size of the admitted group without submitting LORs; e.g., applicants with high
AI are a much larger share of the admitted class than applicants with low AI.
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E Proofs

Proof of Proposition 1. First, we will augment the primal optimization problem in Equation (13)
with auxiliary covariates E1, . . . , Ej so that Eg =

∑
Gi=g,Wi=0 γiφ(Xi) −

∑
Gi=g,Wi=1 φ(Xi). Then

the optimization problem becomes:

min
γ

J∑
z=1

1

2λg
‖Ej‖22 +

λg
2

∑
Zi=z,Wi=0

γ2i + I(γi ≥ 0)

subject to
∑
Wi=0

γiφ(Xi) =
∑
Wi=1

φ(Xi)

Ej =
∑

Gi=g,Wi=0

γiφ(Xi)−
∑

Gi=g,Wi=1

φ(Xi), z = 1, . . . , J

∑
Gi=g,Wi=0

γi = n1g,

(6)

where I(x ≥ 0) =

{
0 x ≥ 0
∞ x < 0

is the indicator function. The first constraint induces a Lagrange

multiplier µβ, the next J constraints induce Lagrange multipliers δ1, . . . , δJ , and the sum-to-one
constraints induce Lagrange multipliers α1, . . . , αJ . Then the Lagrangian is

L(γ, E , µβ, δ, α) =
J∑
z=1

 1

2λg
‖Ej‖22 − Ej · δj +

∑
Gi=g,Wi=0

1

2
γ2i + I(γi ≥ 0)− γi(α+ (µβ + δj) · φ(Xi))


+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(7)
The dual objective is:

q(µβ, δ, α) =
J∑
z=1

min
Ej

{
1

2λg
‖Ej‖22 − Ej · δj

}
+

∑
Gi=g,Wi=0

min
γi≥0

{
1

2
γ2i − γi(α+ (µβ + δj) · φ(Xi))

}
+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(8)
Note that the inner minimization terms are the negative convex conjugates of 1

2‖x‖
2
2 and 1

2x
2 + I(X ≥ 0),

respectively. Solving these inner optimization problems yields that

q(µβ, δ, α) = −
J∑
z=1

λg
2
‖δj‖22 +

∑
Gi=g,Wi=0

[αj + (µβ + δj) · φ(Xi)]
2
+


+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(9)
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Now since there exists a feasible solution to the primal problem (13), from Slater’s condition we
see that the solution to the primal problem is equivalent to the solution to maxµβ ,α,δ q(µβ, α, δ).
Defining βj ≡ µβ+δj gives the dual problem (18). Finally, note that the solution to the minimization
over the weights in Equation (8) is γi = [αj + βj · φ(Xi)]+, which shows how to map from the dual
solution to the primal solution.
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